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Chapter 1

Introduction
In an already seminal paper, Gatheral, Jaisson and Rosenbaum [29] provided two impor-

tant tools to the study of volatility by proposing a so-called fractional model, the Rough

Fractional Stochastic Volatility (RFSV) model, as well as an estimation parameter of the

Hurst exponent. It is defined as follows for S the price process, σ the volatility and X the

log-volatility: 
dSt = StσtdWt

σt = exp{Xt}
dXt = νdWH

t − α(Xt −m)dt

(1.1)

where α > 0, ν > 0,m ∈ R. The intuition behind their ideas is the application of fractional

Brownian Motion (fBM) in the modelling of log-volatility to support empirical evidence

of roughness and fractal-like behaviour. Indeed, from its non-zero correlation between in-

crements and self-similar scaling properties, fBM seems more suitable for this purpose as

opposed to the standard Brownian motion. Also, they showed that the Hurst exponent was

of order 0.1 using an Equity-based dataset. This has implications at two different levels:

this demonstrates the roughness of volatility which was not incorported in the FSV model

by Comte and Renault [18] which assumed H > 1/2. Also, it entails that the volatility does

not have the long-memory property although being a widely accepted fact (see the seminal

works of Andersen et al. [1], [2], [3] based on this fact).

This report is based on this particular paper from Gatheral et al. Gatheral et al. [29] and

complements it with additional numerical experiments and more explicit proofs of some of

their theoretical results. More precisely, in Chapter 1 we will be interested in setting the

theoretical foundations of the study of roughness of volatility: first, we introduce fractional

Brownian motion as a Gaussian process and see the equivalence with the classical represen-

tation from Mandelbrot and Van Ness [44]. We will then define the RFSV model and its

fractional Ornstein-Uhlenbeck modeling of log-volatility with H < 1/2. This will be accom-

panied by two distributional results (and their proofs) to approximate log-volatility by an

affine function of fBM. We have not found in the litterature such result for H < 1/2 and

we provide an argument using Jost’s work [39] on Hurst parameter change. In addition, the

RFSV essentially relies on the Hurst exponent and we need to estimate it. Gatheral, Jaisson

and Rosenbaum propose a simple estimation procedure based on the q-th log-volatility in-

crements moment. We will explain how this procedure is designed and justify its properties

using Besov spaces by proving a convergence in probability result that was simply assumed

in the original paper (from Gut’s theorem, [32]). We will conclude this part by presenting
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the tools to log-variance forecasting using the RFSV model.

To support this model, after presenting both an established and a newly-formed datasets,

we will discuss empirically three points in Chapter 3. The new dataset is about other asset

classes to which we would like to extend RFSV. We will first assess the estimation procedure

for H by comparing with the results from the original paper and include some numerical

evidence coming from market data which indicates that why the RFSV model should be

preferred. Indeed, we observe the self-similarity property and Gaussian distributions at

across all reasonable timescales (from 1 up to 120 days). Then, using simulation, we will

compare results obtained using the Hurst exponent estimation procedure through the lenses

of two volatility computation methods: the Uncertainty Zone method developed by Robert

and Rosenbaum [59] and, depending on the data, either the standard Realized Variance

estimator or the Minimal Realized Variance estimator as defined by Andersen et al. in [1].

We will retrieve the result on estimator smoothing presented in Appendix C, [29].

We will then be interested in the long-memory property from two points of view: first, this

stylized fact for log-volatility (and sometimes for volatility) appears to be wrong. We will

observe how our market and simulated data do not verify a power-law decay for the autoco-

variance function which may contradict long-memory property (but is not sufficient). This

study will then be augmented by investigating two standard tests (as in [29]) under model

misspecification: the Variance of Variance [1] and fractional differentiation [3] methods. Al-

most all of our market and simulated datasets pass those long-memory tests whilst having

short-memory property given by Hurst exponents below 1/2, leading to a contradiction.

Finally, one way to show if a model captures properly the underlying structure is to assess

its predictive power. Here, we will be interested in forecasting log-variance and comparing

our model to benchmark auto-regressive models as well as Corsi’s HAR model [20]. We

see that we obtain similar (yet not as strong) results as in [29]. More precisely, we found

that over a set of 15 assets that includes the ones studied in the original paper and using

both the realized variance and kernel and over forecasting horizons of 1, 5 and 20 days,

we cannot distinguish any clear predictive domination of RFSV model over HAR (the AR

models being almost every time outperformed).
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Chapter 2

Definitions

2.1 Overview of Gaussian Processes

This part is based on the lecture notes of the course Continuous martingales and stochastic

calculus, University of Oxford, written by Prof. Jan Ob lój. For completeness, we shall

comment that those definitions are identitical (or at least, closely consistent) with those of

Gallager, [27], Chapter 3.

We start with the definition of Gaussian random variable on a probability space (Ω,F ,P).

Definition 2.1.1. A random variable X : Ω → R is called a centered standard Gaussian

(or normal) if its distribution admits a density

pX(x) =
1√
2π
e−

x2

2

Additionally, a random vector X taking values in Rd is said to be Gaussian if, and only if,

any linear combination of its components is Gaussian (in R), that is, if and only if:

∀u ∈ Rd 〈u,X〉 :=

d∑
i=1

uiXi is Gaussian

The natural extension of this definition is to define Gaussian processes as follows:

Definition 2.1.2. A stochastic process (Xt)t∈R+ on (Ω,F ,P) is called a centered Gaussian

process if any finite linear combination of its coordinates is a Gaussian variable.

Equivalently, X is a (centered) Gaussian process if:

∀n ∈ N, ∀ 0 ≤ t1 < t2 < · · · < tn, (Xt1 , . . . , Xtn) is a (centered) Gaussian vector

Given the specific properties of Gaussian processes and Daniell-Kolmogorov’s theorem,

it is possible to prove that for a Gaussian process is characterised by its covariance function

Γ : [0; +∞[2→ R defined as follows:

Γ(t, s) := Cov(Xt, Xs)

We can also prove the converse - that is, given a suitable function Γ, there exists an appro-

priate Gaussian process with Γ as its covariance function. More precisely, we reformulate

this result in the following theorem:
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Theorem 2.1.3 (Characterisation of Gaussian processes via the covariance structure).

Let (Xt) be a centered Gaussain process with Γ(t, s) := Cov(Xt, Xs) its covariance function.

Then Γ is symmetric and positive semi-definite in the sense that for all n ∈ N, 0 ≤ t1 <

· · · < tn:

∀u ∈ Rn
∑

1≤i,j≤n
uiujΓ(ti, tj) ≥ 0

Conversely, for any such function Γ, there exists a centered Gaussian process (Xt) such that

Γ is its covariance function.

Remark. Given this definition in terms of covariance, it implied that the covariance matrix

(Γ(ti, tj)1≤i,j≤n) is symmetric and positive semi-definite.

We can now study a few different definitions or points of view on Fractional Brownian

Motion using these results.

2.2 Definition of Fractional Brownian Motion

2.2.1 Classical definition for non-negative times:

We will use the convention that, unless stated otherwise, 0 ≤ t ≤ T < ∞. Let (Ω,F ,P)

be a probability space which we complement with a F-filtration (Ft)t∈[0;T ] generated by an

H-fBM. Denote (t, ω) 7→ W (t, ω) the Brownian Motion from Bachelier, Wiener and Lévy

that we will eventually adapt to be extended to negative times as well. The most common

definition of Fractional Brownian Motion (further referred to as fBM) is given by daying

that it is a centered Gaussian process with a given covariance structure. More explicitly,

we can find in Hu et al. [34] the definition stated below:

Definition 2.2.1. The fractional Brownian Motion (fBM) with Hurst parameter H ∈]0; 1[,

denoted WH , is a zero mean (centered) Gaussian process with covariance:

∀ s, t ≥ 0 ΓH(t, s) := E[WH
t W

H
s ] =

1

2

[
t2H + s2H − |t− s|2H

]
(2.1)

and such that WH
0 = 0.

Remark. This definition of fBM is said to have its variance normalised at time t = 1.

Proof. Theorem 2.1.3 ensures that such an object is well-defined. Indeed, this result yields

that a Gaussian process is characterised by its covariance structure. Here, the given covari-

ance function is symmetric and it remains to prove the positive semi-definiteness. For this

purpose, two choices are offered to us: we can either use the very general theory developed

by Gangolli [28] in 1967 or rely on more recent development by Ossiander and Waymire

[53] where multidimensional time parameters in Rd are studied and consider the special

case d = 1. We will review both in Appendix B, Section B.1 as a short introduction to the

extensive generalization efforts about fBM.
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2.2.2 Extension to negative times:

We take this opportunity to define the two-sided Brownian Motion used in the next section

in the representation result of fBM from Mandelbrot and Van Ness [44] stated in Definition

2.3.1. More precisely, in their book [33] (Remark 6.1, page 61), Gusak et al. specified

that the particular case H = 1/2 in Definition 2.2.1 (where (2.1) was extended to R2

using E[WH
t W

H
s ] = 1

2

[
|t|2H + |s|2H − |t− s|2H

]
) defines the two-sided Brownian motion.

Spodarev et al. [64] make a similar observation in the Example 3 of Gaussian Random

Fields section. In [40], Kaarakka et al. use the same idea to define the two-sided fBM for

any H ∈]0; 1[.

Remark. In honour of the works of Hurst [37] in the 1950s, the parameter H is called the

Hurst exponent and depending if H > 1/2, H = 1/2 or H < 1/2, the fBM showcases

very different properties. For H > 1/2 (resp. H < 1/2) we have the persistence (resp.

anti-persistence) property of fBM - that is, positive (resp. negative) correlation between

increments. More precisely, we have:

E[(WH(1)−WH(0))(WH(s+ 1)−WH(s))] ∼ H(2H − 1)s2H−2 (2.2)

See Appendix B, Section B.2 for the derivation of the formula. For H = 1/2, we have

uncorrelated jointly Gaussian increments, hence independent. In addition, the larger H the

smoother the path in the sense that for H > 1/2 (resp. H < 1/2), we have long-range (resp.

short-range) dependence (as in Definition 3.2.1). The words of Gatheral et al. [29], page

3, are as follows: there is a one to one correspondence between regularity and long memory

through the Hurst parameter H. This is what motivated the RFSV model from empirical

analysis of financial data. Before that, we shall take a look at the historical representation

of fBM as follows.

2.3 A representation theorem for fBM

The term Fractional Brownian Motion first appeared in Mandelbrot and Van Ness’ seminal

paper [44] in which they propose a more constructive representation of fBM which was

proved to be unique for H > 1/2 in [31] as a decreasing, right-continuous concave function

on R+. They define fBM as follows:

Definition 2.3.1 (Reduced Fractional Brownian Motion).

Let 0 ≤ H < 1 and let b0 ∈ R be an arbitrary real number. Define WH(t, ω) the reduced

fractional Brownian motion with parameter H and starting value b0 at time t = 0. WH(t, ω)

is defined for all ω ∈ Ω by:

WH(0, ω) = b0

WH(t, ω)−WH(0, ω) =
1

Γ(H + 1/2)

{∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]dW (s, ω)

+

∫ t

0
(t− s)H−1/2dW (s, ω)

}
∀t > 0
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Remark. If H = 1/2 and b0 = 0, then we retrieve the two-sided Brownian Motion:

W 1/2(t, ω) = W (t, ω)

Without loss of generality, we will consider that b0 = 0 in the rest of the report. Also, as

hinted above, this is the original definition but we usually normalise the variance at time 1

by multiplying by a constant given in the proof of Lemma A.1.8, (A.3).

For completeness, we placed in Appendix A details and results on the equivalence be-

tween Definition 2.2.1 and Definition 2.3.1. However, those developments are not central in

this report hence not placed in the main body.

One key feature of fBM is self-similarity. From Nuzman et al. [51], we can define self-

similarity as stated below:

Definition 2.3.2 (H-self-similarity (H-s.s.)).

A stochastic process (Y (t))t∈R is said to be H-self-similar (i.e. H-s.s.) for H ≥ 0 if it

verifies the scaling property:

(Y (at))t∈R
d
= (aHY (t))t∈R ∀a > 0 (2.3)

Remark. Those previous equalities are in the sense of equality in distribution. We also use

the classical definition of the Gamma function:

Γ(x) :=

∫ +∞

0
tx−1e−tdt, x > 0

Gatheral et al. [29] use a different definition for fBM and we propose to go over that

give equivalence of definition between the Definition 2.3.1 and the following:

Definition 2.3.3 (Fractional Brownian Motion via self-similarity).

Let 0 < H < 1. (WH
t )t∈R is the Fractional Brownian Motion with Hurst exponent H if

and only if WH is a centered H-self-similar Gaussian process verifying for any t ∈ R,∆ ≥
0, q > 0:

E[|WH
t+∆ −WH

t |q] = Kq∆
qH (2.4)

where Kq is the q-th moment of the absolute value of a standard Gaussian variable.

A process verifying Definition 2.2.1 verifies Definition 2.3.3 from the equivalence with

Definition for two essential features we proved: stationarity (Lemma A.1.3) and self-similarity

(Remark A.1.2) of increments. Indeed, we obtain

WH
t+∆ −WH

t
d
= WH

∆
d
= ∆HWH

1

where WH
1 ∼ N(0, 1) if we have normalized at time t = 1. We conclude by taking the q-th

moment.

The other implication requires to use the standard trick when it comes to covariance esti-

mation. From the definition, in particular for q = 2, for s ≤ t ∈ R, set ∆ := t − s ≥ 0,

yielding:

E[(WH
t −WH

s )2] = K2(t− s)2H
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Therefore:

E[WH
t W

H
s ] =

1

2

[
E[(WH

t )2] + E[(WH
s )2]− E[(WH

t −WH
s )2]

]
=
K2

2

[
|t|2H + |s|2H − |t− s|2H |

]
Recalling that Kq is the q-th moment of the absolute value of a standard Gaussian, we know

that K2 = 1 which concludes the proof by continuity of Gaussian and their characterisation

through their covariance structure.

Remark 2.3.4. Integration by parts for integral w.r.t to fBM:

As explored in McGonegal [45], Fractional Brownian Motion is not a semi-martingale if

H 6= 1/2: its quadratic variation is infinite for H < 1/2 and zero for H > 1/2. The latter

contradicts the Doob-Meyer decomposition since WH has unbounded 1-variation. This very

unboundedness of variation renders ineffective the traditional definition via Riemann sum

of the stochastic integrals with respect to fBM. We shall redirect ourselves towards to the

more general (path-wise) Riemann-Stieljes definition (see Section 6.1, [45]).

Additionally, the author gives that for f a deterministic function such that it has bounded

p-variation sample paths for all p < 1/(1 −H), we have the following integration by parts

relationship: ∫ T

0
f(t)dWH(t) = f(T )WH(T )−

∫ T

0
WH(t)df(t) (2.5)

2.4 Rough Fractional Stochastic Volatility model

We would like to specify a model for the log-volatility that respects some empirical observa-

tions made originally by Gatheral et al. [29] on increments of log-volatility. More precisely,

we model the price dynamics using the following SDE for t ≥ 0:
dSt = StσtdWt

σt = exp{Xt}
dXt = νdWH

t − α(Xt −m)dt

(2.6)

where m ∈ R, ν > 0, α > 0, (σt) is the volatility process, (Xt) is the log-volatility process,

and (Wt) a standard Brownian Motion. Note that the risk-free rate is ignored for simplicity

of notation but its implementation does not entail any technical difficulty. The RFSV model

is essentially about demanding fractional Ornstein-Ulhenbeck dynamics for the log-volatility

(Xt) to correspond to empirical observations. Indeed, the authors illustrate the stylized fact

that increments of log-volatility have an approximate normal distribution. The naive model

is then:

log(σt+∆)− log(σt) = ν(WH
t+∆ −WH

t )

where ν > 0 and WH being a fractional Brownian Motion with Hurst exponent H - which

is, essentially, a Gaussian. Unfortunately, this model does not respect stationarity which

may be a problem in two situations: it entails a the lack of tractability and over long period

of time, volatility should be stationary. In order to impose a stationarity model, Gatheral
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et al. use a two-step model for volatility using a modified Ornstein-Uhlenbeck process to

generate the log volatility, further referred as fractional Ornstein-Uhlenbeck (fOU), using

the following SDE:

dXt = νdWH
t − α(Xt −m)dt (2.7)

with m ∈ R, ν > 0, α > 0. According to the development in [16] and [40], we will

reformulate the problem without the mean-reverting feature and in terms of the Langevin

equation in integral form as follows:

Xt = φ− α
∫ t

0
Xsds+ νWH

t , t ≥ 0 (2.8)

where φ is a random variable that represents Mandelbrot-Van Ness’ definition is the sense

that fBM originates from the infinite past.

To specify an initial condition, the authors observe that for all H ∈]0; 1], a ∈ [−∞; +∞[,

the integral ∫ t

a
eλudWH

u , t > a

exists as a path-wise Riemann-Stieltjes integral which makes the next observation well-

defined, in our case define λ := α > 0. As α and ν are constant, we fulfil the local Lipschitz

and linear growth conditions which yield that there exists an a.s. unique strong solution to

(2.8) that happens to be a.s. continuous. Finally, to transfer from (2.8) to (2.7), observe

that dXt = d(Xt − m). Indeed, for X verifying (2.7), we have by integration by parts

(Remark 2.3.4, (2.5)):

d(Xte
αt) = dXte

αt + αXte
αtdt

= eαt
[
νdWH

t + αmdt
]

So, it follows that

Xte
αt = ν

∫ t

0
eαsdWH

s +m

∫ t

0
αeαsds+X0

Xt = e−αt
[
ν

∫ t

0
eαsdWH

s +m(eαt − 1) +X0

]
We can than reformulate this using the notation of (2.8):

Xt = e−αt
[
ν

∫ t

0
eαsdWH

s + φ+m

]
(2.9)

where φ is now part of the initial condition X0 = φ + m. By property of the Riemann-

Stiejles integral w.r.t. Gaussian process, it is a.s. continuous as afore-mentioned. We would

like to incorporate the whole past history to ensure stationarity in our solution (so that it

is not dependent on the value at time 0) without affecting the distribution. As hinted by

Mandelbrot and Van Ness’ definition (Definition 2.3.1), fBM is defined by the whole past

history - we then consider the two-sided fBM (as in Section 2.2.2). Define:

φ := ν

∫ 0

−∞
eαudŴH

u

8



As explicitly treated in Kaarakka et al. [40], φ is well-defined. Indeed, recall using integra-

tion by parts (as in (2.5)), we have in integral form for any s ∈ R+∫ s

0
eαsdWH

u = eαsWH
s −

∫ s

0
αeαuWH

u du

This can be extended to s ∈ R− using ŴH and its definition on the negative semi-infinite

interval. Explicitly, we obtain:∫ 0

s
eαsdŴH

u = −eαsŴH
s −

∫ 0

s
αeαuŴH

u du

Since α > 0, the first term will see its variance shrink to zero as s gets larger. For the

second term, see [40], Section 2.2, for the final details of the limit s→ −∞. Therefore:

Xt := ν

∫ t

−∞
e−α(t−u)dŴH

u +m

still verifies the equation but with the initial condition set to be X0 = φ+m. Note that the

last term m is due to the mean-reverting component of the SDE (2.7). From the stationarity

of the increments of fBM (Lemma A.1.3), such reformulation is stationary. By the usual L2

argument associated with Kolmogorov-Čentsov’s continuity criterion (Theorem A.1.6) and

closed-ness of Gaussians under countable sums, Xt is a.s. Gaussian. Also, we let ourselves

reformulate this initial value φ in terms of the initial value of X, namely X0, so that the

starting value of the volatility σt defined as follows is as desired:

σt = exp{Xt}, where , t ≥ 0

In the rest of the report we will use the stationary solution of (2.8) (note that we integrated

from −∞ to 0) expressed formally by:

Xα
t := ν

∫ t

−∞
e−α(t−s)dWH

s +m (2.10)
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2.4.1 Approximating the fOU process

One of the most important results in [29] is the fact that the log volatility defined in (2.7)

behaves like fBM for α << 1/T and that such α is indeed expected to be small as it will be

used as a measure of the granularity (i.e. tick size). They formalise this idea in Proposition

3.1 in [29] as stated below:

Proposition 2.4.1. Let WH be a fBM and Xα be an fOU process (i.e. a solution of (2.7)

or (2.8) for a given α > 0). Then:

E
[
supt∈[0;T ]|Xα

t −Xα
0 − νWH

t |
] α→0−−−→ 0 (2.11)

Proof. Presented in Appendix B, Section B.3 using Lemma 2.4.2.

To prove such proposition, we need to find a bound for the supremum process of fBM.

Gatheral et al. cited the works of Novikov and Valkeila [49] in which they carried out the

calculations in a more general context of stopping times. Unfortunately, it seems that the

result of supremum process bound for H < 1/2 Gatheral et al. used is not in the cited

paper because, as Novikov and Valkeila said: we do not have any upper bound for the case

H < 1/2, but we conjecture than we have a similar result. Actually, even some of the recent

developments elude the case H < 1/2 for the supremum (e.g. [22], [65] both published in

2009).

More precisely, Novikov and Valkeila proved for H > 1/2 the following result in Theorem

1.2 and Proposition 2.1 of [49]. We propose a reformulation as follows:

Lemma 2.4.2 (Supremum process upper bound).

Let H ∈]0; 1[ and p ≥ 1. Then, there exists a function C(p,H) such that

E

[
( sup
t∈[0;T ]

|WH
t |)p

]
≤ C(p,H)T pH

Proof. See Appendix B, Section B.4.

Remark 2.4.3. We proved that, under the assumption that α is small enough, our fOU

process behaves almost like a affine function of fractional Brownian Motion which is what

we looked for. Indeed, our naive non-stationary model is retrieved when setting formally

α = 0.

We wish to replicate the properties of fBM as well as incorporating new ones. As an

example, the mean reversion of the fOU process which is a stylized fact for traded assets

leaves us with a more realistic model (as studied in [26]). In addition, Gatheral, Jaisson and

Rosenbaum [29] presented another interesting result: the fOU process produces a similar

scaling property as the fBM when α goes to zero (Corollary 3.1 of the original paper). They

state it as follows:

Proposition 2.4.4 (Approximate scaling property as α→ 0).

Let q > 0, t > 0, ∆ > 0. We have that:

E
[
|Xα

t+∆ −Xα
t |q
] α→0−−−→ νqKq∆

qH (2.12)

where Kq is the q-th absolute moment of a standard normal.
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To prove such result, Gatheral et al. needed to express the covariance between Xα
t+∆

and Xα
t and use the fact that Gaussians are characterised by their mean and variance and

used the associated properties.

Proof. See Appendix B, Section B.5.

Remark 2.4.5. As explained in Cabrera and Volodin [15] (p. 646), another proof could have

been to use the classical result of La Vallée - Poussin that a sequence {Xn} of random

variables is uniformly integrable if, and only if, there exists a function φ that such that

E[φ(Xn)] < ∞ where φ : R∗+ → R∗+ which verifies φ(t)/t
t→+∞−−−−→ 0. We would have chosen

φ(x) = |x|(q+1)/q.

2.5 Estimating the smoothness of the log-volatility process

2.5.1 ξ-estimation procedure: definition and intuition

We are interested in studying market data to estimate the Hurst parameter H that we

believe to be essential in understanding the roughness of volatility. This will be done by

reproducing the results given by [29] - that is, observing that Hurst exponents lie between

0 and 1/2 and of order 0.1 across all assets. In order to do so, we shall look into a two-step

process which is based on a similar estimator to the absolute log-volatility q − th moment.

We will further refer to this estimator as m(q,∆) defined as follows:

Definition 2.5.1. Suppose we are in the RFSV framework given by (2.6) and that we have

data on a uniform time grid of mesh ∆ > 0, namely {tn}Nn=0 := {n∆}Nn=0, where N verifies

N := bT/∆c. Define for q ≥ 0:

m(q,∆) :=
1

N

N∑
k=1

|log(σk∆)− log(σ(k−1)∆)|q

Remark 2.5.2. Such estimator implicitly expects to observe the volatility at regular intervals

but it is reasonable to assume so as many financial signals are (re-)constructed this way.

The properties of such object are not trivial and although under stationarity assump-

tions it looks like the empirical counterpart of E[|log(σ∆)− log(σ0)|q].

Let us ignore the technical details for now. Gatheral, Jaisson and Rosenbaum [29] take

another approach using fBM and its Hurst parameter H. Indeed, they use the self-similarity

of fBM and the approximate scaling property of their RFSV model (Proposition 2.4.4) to

infer a value of H without making any additional assumption. In practice, using (2.12),

they use a range of values for q and ∆ to estimate different values for m(q,∆) as a function

of ∆. Then, if the RFSV model is true, taking the logarithm yields that a simple linear

regression of log(m(q,∆)) against log(∆) for a given q should give

log(m(q,∆)) ≈ ξqlog(∆) + C for α << 1/T
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where C is a constant and more importantly, if the approximation (2.12) holds, we should

have

ξq ≈ qH

Finally, to estimate H as one value, we will take the mean value over all the values of q

considered. Indeed, there is no reason why a particular value of q should be preferred but

smaller or large values could polarize numerical bias in the data. With the hope to smooth

out this effect, we could use the mean value. We will further refer to this numerical recipe

as the ξ-estimation procedure. To motivate this argument about the independence of ξ w.r.t

q, we plot numerical values of ξq against q, as shown in Appendix ??, Figure 3.9. We see an

almost straight line that goes through the origin. The slight convex curvature was deemed

as a consequence to the finiteness of data that implies a small bias in both the estimations

of the moments and the linear regression estimation procedure. It is discussed further in

Section 3.3.3.

This procedure has several advantages:

• As afore-mentioned, it does not depend on a prior belief regarding the value of H;

• Because we are working with first order differences on the log-scale, it is also inde-

pendent from the volatility scaling (which is not the case when we will try to predict

volatility);

• It is quite simple both to understand and to implement;

This process seems very appealing and has proved to be very interesting given its simplicity.

However, it is not obvious why this argument should hold. Actually, our RFSV imposes a

specific log-volatility process which verifies the stationarity assumption in the increments

to approach E[|log(σ∆) − log(σ0)|q] numerically. However, our main assumption about

m(q,∆) is related to Besov spaces. Informally, we are interested in using a result related to

the strength of convergence of m(q,∆). Indeed, if we could prove that there exists a finite

number yq or an a.s. finite random variable Yq so that

N qHm(q,∆)
p−→ Yq (2.13)

then, we would know that m(q,∆) informs us on the roughness of a path that is at least as

rough as the real one. This is what we are interested in since we are ultimately interested in

knowing if H < 1/2 or not. To quote Rosenbaum in his related paper [61], Besov spaces are

a natural framework to study smoothness of the sample paths of a continuous time random

process [in Lp]. We will now give a brief overview of Besov spaces.

2.5.2 Besov spaces

Cohen’s definition [17] of Besov spaces is similar to the following:

Definition 2.5.3 (Besov spaces).

Let f be a real function defined on [0; 1]. Let ∆n
h be the operator defined recursively by
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∆1
h : f 7→ f(· + h) − f(·) and ∆n+1

h : f 7→ ∆1
h(∆n

h(f)). The n-th order Lp modulus of

smoothness of f on [0; 1] is

ωn(f, t)p := sup
|h|≤t
‖∆n

hf‖Lp(Ωh,n)

where Ωh,n := {x ∈ [0; 1] : x+ kh ∈ [0; 1] ∀k = 0, . . . , n}.
For p, q ≥ 1, s > 0, the Besov space Bsp,q([0; 1]) consists of the functions f ∈ Lp[0; 1] such

that:

{2sjωn(f, 2−j)p}j≤0 ∈ lq

with n ∈ N such that s < n.

Remark 2.5.4. Bsp,q([0; 1]) is a Banach space equipped with the norm

‖f‖Bsp,q([0;1]) := ‖f‖Lp + ‖{2sjωn(f, 2−j)}j≤0}‖lq

Actually, they can be extended for p or q less than 1 and s > max{1/p− 1, 0}, however the

resulting Besov space Bsp,q([0; 1]) is only a quasi-Banach space.

Definition 2.5.3 makes sense in term of smoothness of paths as it measures the n-th

order variation of f directly in Lp at dyadic points which is then brought up to lq.

As formally studied by Rosenbaum in [61], p-variations come up naturally in Mathematical

Finance. For instance, the particular case of p = 2 gives the so-called realized volatility or

a link between first order p-variations and market microstructure has also been studied by

Rosenbaum [62]. This can also be complement with the following result which is not exactly

what we look for but gives a good intuition of the ongoing dichotomy around the order s

of the Besov spaces.

Proposition 2.5.5. Let (Xt)t∈[0;1] be a zero mean Gaussian process with stationary incre-

ments. Let σ(h) := E[(Xt+h −Xt)
2]1/2. Additionally, assume that for some 0 < r < 1 and

0 < α <∞, we have:

lim
h→0

σ(h)/hr = α

Then, we obtain in particular:

• For 0 < s ≤ r, 1 ≤ q <∞ X ∈ Bsq,∞

• For s > r, 2 ≤ q <∞, rq > 1 X /∈ Bsq,∞

Given that the fBM has a finite second moment at time t = 1, we obtain by H-self-

similarity and stationarity of increments that σ(h) = hHE[X2
1 ]1/2. Therefore, the afore-

mentioned Proposition 2.5.5 can be applied with r = H. The details on how to handle

the cases 0 < q < 1 (or 0 < q < 2 for the second bulletpoint) are not explicitly treated

so, when choosing q to perform the regression as in Section 2.5.1, we will assume that the

result still hold in the quasi-Banach spaces we then obtain. We see that the parameter r

contains information in terms of regularity of the fBM since all paths belong to Brq,∞ almost

surely fo r ≤ H. Given that r = H, it leads us to believe that this is the link between fBM

and its regularity parameter H by making use of Besov spaces. Our hope is that we can do
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exactly the same as we did with fBM but using a first order q-variation of our fOU process

given by (2.7) which is the exact content of the next result as presented in Corollary 1, [61].

First, we define the first order q-variation on the time interval [0; 1] for N = 2j data points

equally spaced (and time-scaled by T if necessary) by:

V q
j (X) :=

2j∑
k=1

|Xk2−j −X(k−1)2−j |q

We can now see the Proposition that will yields a result similar as (2.13) that we could

apply on our estimator m(q,∆)

Proposition 2.5.6 (First order p-variation convergence and Besov spaces dichotomy).

Let (Xt)t∈[0;1] be a continuous process such that for q > 1, 1/q ≤ s < 1 and Y an almost

surely finite and positive random variable. Suppose that

2j(qs−1)V q
j (X)

p−→ Y

Then, for any ε > 0, we have X ∈ Bs−εq,∞([0; 1]) and X /∈ Bs+εq,∞([0; 1]).

As explained in the ξ-estimation procedure presentation, this Proposition can hopefully

be applied to m(q,∆) as assumed in [29]. We interested in proving that we have a Weak

Law of Large Numbers (WLLN) as stated in Proposition 2.5.6 with an arbitrary q and

X being the log-volatility process specified in the RFSV model (2.6). Such process X has

Gaussian correlated increments albeit identically distributed. This correlation is the non-

classical component of the problem.

Actually, this research topic is still very active. Existing results involve a Central Limit

Theorem for additive functional of fBM but these are limited to H ∈
[

1
d+2 ; 1

d

]
found in [50]

(improving the result first obtained for H ∈
[

1
d+1 ; 1

d

]
in [35] of the same authors). Here,

d is the dimension of the parameters space : in our case, d = 1 and therefore, we know

Proposition 2.5.6 can be applied for H ∈ [1/3; 1]. The lower bound 1/(d+ 2) is found to be

optimal since lower values of H would lead to an infinite constant in their proof. Still, these

results are stronger that what we need since we only need convergence in probability and

not in distribution, which will hopefully relax the lower bound assumption of 1/3 for H.

We will therefore rely on WLLN results in the context of dependent variables, namely given

by the theorem of Section 3 from Gut [32], page 50. Its application is presented in Appendix

B, Section B.6.

Hence, we can apply Proposition 2.5.6 on the continuous equivalent to fBM we obtained by

using Kolmogorov’s continuity criterion for s = H. Therefore, it is very insightful in the

understanding of the estimator m(q,∆): the Hurst parameter characterises the maximum

regularity parameter verified by fBM. This is the essence of the interest behind fractional

Brownian Motion models as they inform on the roughness of volatility. Through m(q,∆),

we are given to observe a path that is at least as rough as the original path which will help

up know if H < 1/2 regarding the implied properties of the log-volatility (i.e. short-memory

property). Because H is the extremal value we can reasonably hope to capture this partic-

ular roughness parameter using a linear regression for different value of q (See Section 2.5

for further details and Section 3.3.2 for the numerical results).
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2.6 Predictions of fBM

We would like to assess how well our model capture the structure of real world data. We

perform this by investigating the predictive power of the RFSV model. Hence, we shall

need a method to predict the value of Fractional Brownian Motion given its past values,

namely ŴH
t0+a := E[WH

t0+a|WH(t), t < t0], where t0 is arbitrary and represents the last date

we observed from the fBM and note that a > 0. As Gatheral et al. [29] did, we are going

to rely on the study of Nuzman and Poor [51] and their linear processing of fBM using

Lamperti’s transform. We will briefly cover the main results we are going to use as well as

the idea behind their breakthrough - that is, prediction of fBM in the context of H < 1/2.

From Theorem 4.2 [51]:

Theorem 2.6.1 (Prediction of fBM for H < 1/2).

Let WH be a fractional Brownian Motion with Hurst parameter H ∈]0; 1[. For any a > 0

and t0 ∈ R, we have:

ŴH(t0 + a) = WH((t0) +
cos(πH)

π
aH+1/2

∫ +∞

0

WH(t0 − s)−WH(t0)

sH+1/2(s+ a)
ds

This can be reformulated in the case H < 1/2 as follows:

ŴH(t0 + a) =
cos(πH)

π
aH+1/2

∫ +∞

0

WH(t0 − s)
sH+1/2(s+ a)

ds

Remark 2.6.2. There exists also a reformulation for H > 1/2 but this case is not central in

this report.

Nuzman and Poor [51] provide a comprehensive and technical argument which is beyond

the scope of this work but they propose an original proof using Lamperti’s transform [42].

This mathematical object is an invertible map between H-self similar processes and shift-

stationary processes. They define it in a similar way as what follows (Definition 2.1, [51]):

Definition 2.6.3. Let I ⊂]0; +∞[ be a positive real index set. For each H ∈ R, the

Lamperti transformation with parameter H on R, denoted LH , is an invertible map between

R-valued functions on I and R-valued functions on log(I). Indeed, for each y : I → R the

function LHy : log(I)→ R is given by

LHy(τ) = e−Hτy(et), τ ∈ log(I)

The inverse transform is then given by

L−1
H x(t) = tHx(ln t), t ∈ I

The authors also explain that we are interested in predicting using the information

contained a finite time interval containing the origin. Hopefully, the particular case of fBM

has stationary increments and therefore we can jump to a future time t0. From Nuzman

and Poor’s words ([51], p. 14), the information contained in a self-similar process on a

positive or negative neighborhood of the origin is equivalent to the information contained in
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a stationary process on a semi-infinite interval. They made a link between the study of the

frequency domain (as found in signal processing methods) and the prediction of fBM via

spectral factorisation. Indeed, from Definition 2.4 by Mandelbrot and Van Ness [44], we

see that we need the semi-infinite past information to generate fBM. As a measure of the

quality of prediction, they use the renowned Minimum Mean Square Error (further referred

as MMSE and denoted D2) measure of fit defined as follows:

D2 := E[(Z − Ẑ)2]

where Z is the random variable we are trying to predict and Ẑ the (optimal) prediction

itself.

Remark 2.6.4. We can define d2 as a the normalized MMSE. Using H-self similarity of fBM,

we obtain for an arbitrary fixed a > 0 that:

d2(WH(a)) :=
D2(WH(a))

E[WH(a)]2
=
a2H

a2H

D2(WH(1))

E[WH(1)]2
= d2(WH(1))

Therefore, the choice of a is not crucial and will be chosen to be 1 in the technical details. .

Nuzman and Poor ([51], p. 21-24) proved that the normalized MMSE for fBM verifies

for any 0 < H < 1:

d2(WH(1)) =
Γ(3/2−H)

Γ(2− 2H)Γ(H + 1/2)
(2.14)

See Figure ?? below. Observe that for the extreme cases, H → 0 yields that we can only

explain half of the variance using predictions since d2(WH(1)) = 1/2 and we also retrieve

that, for H = 1/2 we have d2(WH(1)) = 1. Indeed, this coincides with the particular case

when the fBM is just standard Brownian Motion and hence prediction is impossible.

Figure 2.1: Normalised Minimised Mean Squared Error (MMSE) of fBM prediction against
H
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Chapter 3

Numerics: Real data and
simulation

In this chapter, our aim is, first, to assess the ξ-estimation procedure using real data. Then,

we will study if our volatility data demonstrates the widely accepted long-memory property

and how standard statistical procedures might wrongfully capture it under model misspec-

ification. In order to do so, we will study conjointly real and RFSV-model simulated data

by comparing how well the model replicates the autocovariance structure of the data. Addi-

tionally, we will see three classical long-memory tests that lead to contradictory conclusions:

our data is seen to have long-memory by two of those tests but the power-law decay and

our RFSV model say otherwise. Finally, we will be interested in comparing the predictive

power of the RFSV model against Auto-regressive benchmark model as well as HAR model

(Corsi, [20]).

3.1 Datasets

For this report, we will use data provided by the Oxford-Man Institute (OMI) [54]. More pre-

cisely, we will propose a study of realized variance (RV) that was estimated using Univariate

and Multivariate HEAVY models from Noureldin, Shephard and Sheppard (respectively [63]

and [48]) as well as Realized Kernel estimations using seminal works of Barndorff-Nielsen

and Hansen ([5]) and more recent developments (see Literature reference page on the OMI

website for the full list).

In addition, we will supplement the study using two others datasets. The first one is OMI’s

Realized Library from which we picked 30 Equity and MSCI Indices with daily 5-minute Re-

alized Variance (Univariate HEAVY model) and Realized Kernel estimates from 03/01/1996

up to 03/01/2009 and can be characterized by a large number of missing values. The second

one is the so-called Live Data Library which contains daily Realized Variance (Multivariate

HEAVY) and Kernel estimates for 15 Assets from both Equity and Foreign Exchange rate

for a larger period of time spanning from 03/01/2000 up to 19/05/2017 with reasonable

number of missing values. Both datasets have assets in common which will be helping with

regards to the discussion on whether H is time-dependant or not.

The original paper by Gatheral, Jaisson and Rosenbaum provides an extensive presentation
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of Equity-based data. Therefore, we will present a refreshed version of their results using

the Realized and Live Data libraries but will focus on presenting a comparison between

Equity and three different classes of assets:

• Equity : SPY and BAC 5-minute Realized Volatility data (using multivariate HEAVY

1-minute subsampling model) for its high quality and very few missing values. The

dataset spans from 01/02/2001 up to 31/12/2009 with daily estimations;

• Foreign Exchange rates: EUR/USD 5-minute minimum Realized Variance (MinRV,

[4]) from 26/07/2005 up to 03/05/2017. Bitcoin(BTC)/USD 5-minute Realized Vari-

ance from 14/08/2011 to 27/04/2017;

• Commodities: 5-minute MinRV for West Texas Intermediate (WTI) Oil price from

18/12/2003 to 26/04/2017 and for Gold price in USD from 27/04/2017 to 20/04/2006.

The latter is named XAUUSD for historical and conventional reasons.

• Fixed Income: The 5-minutes MinRV 2, 5 and 10 Years U.S Treasury Bonds (resp.

from 12/09/2005 to 15/03/2017, from 21/09/2010 to 21/04/2017 and from 13/04/2009

to 20/04/2017);

The complementary data was provided by OANDA using their Python REST-v20 API

(see [19]) and a wrapper we coded for the occasion. Because the data is available under

Japanese candlesticks, we used the Close-to-Close returns on the mid-price. We obtained

from 400,000 up to 900,000 data points, each one correspond to 5 minutes periods. For

Bitcoin data, the rate BTC/USD was extracted from BitCoin Charts ([11]) using a BitCoin

marketplace trading activity, namely of BTC-e, and obtaining 30,000,000 data points that

uses the most recent traded price.

We can observe the quality of the data is different from both sources as one provides a

summary every 5 minutes, implying jumps, whereas the other yields the last traded price of

any transaction (within seconds). This is what motivated the use of two different measures

of volatility.

Remark. The idea to include Realized Kernel estimates is to provide a comparison with a

noise-robust estimate of volatility (see [5]). On the other hand, MinRV from Andersen et

al. [4] is a jump-robust RV estimator. We used an implementation from the R package

highfrequency, [12]. Finally, when not stated otherwise, the Realized Variance is com-

puted using the standard approximation (see [59], Example 1) with S being the observed

price process: ∑
k : 0≤t0<···<tk<···<tN≤t,

(
Stk − Stk−1

Stk−1

)2

which converges in probability to
∫ t

0 σ
2
sds (see pioneering work by Barndorff-Nielsen and

Shephard, [6]).
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3.2 The long-memory property

A stylized fact about volatility is the long-memory property (see Definition 3.2.1). A large

part of the literature comment such behaviour and finds models that satisfy this property

(see [25], [2] partially written by, respectively, Engle and Andersen two of the main figures

in the field of volatility. Also, [18] for the FSV model, [20] for the HAR model). From the

seminal paper on long-memory property by McLeod and Hipel [46] (used for instance in

[29] and [18]), we have the following definition:

Definition 3.2.1 (Long-memory or long-range dependence property).

A stochastic process (Xn)n∈N with covariance stationary time series (where j is called the

lag)

(ρ(j))+∞
j=−∞ := (Cov(Xn, Xn+j))

+∞
j=−∞ for n ∈ Z

is said the verify the long-memory property if

+∞∑
j=−∞

|ρ(j)| = +∞

On the other hand, it verifies the short-memory property if

+∞∑
j=−∞

|ρ(j)| < +∞

Remark. In practice, stationarity is in the sense of weak (second-order) stationarity, that is

to say that the mean and variance are constant in time and Cov(Xk, Xj) depends only on

|k − j| (See Section 7.4, p 266, Walden and Percival [55]).

Remark 3.2.2. The intuition behind this definition is quite clear but the problem with

real data is that we cannot be sure that such property holds from the finiteness of data.

A common proxy to verify this property is the use of an approximate power law for the

covariance function (Dieker, [24]). More precisely, using the same notation as in Definition

3.2.1, suppose as |j| goes to +∞, we have:

ρ(j) ∼ K|j|−γ , K > 0

where f(x) ∼ g(x) ⇔ limx→+∞
f(x)
g(x) = 1 for g(x) non-zero for x large enough. Then, if

0 < γ < 1, we have that X verifies the long-memory property.

3.3 Estimating H using m(q,∆)

3.3.1 Intuition

It is not immediately clear why having an information on the regularity of paths (as dis-

cussed in Section 2.5) would immediately lead to a result concerning the long-range de-

pendence of the path. This relies on a popular result given in (2.2) (used for example by

Nuzman and Poor [51], Section 2.2) that we have for s large enough and H 6= 1/2:

E[WH(1)(WH(s+ 1)−WH(s))] ∼ H(2H − 1)s2H−2
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Therefore, having H > 1/2 (respectively H < 1/2) yields that WH verifies the long-memory

property (resp. short-memory property).

3.3.2 Numerical results

3.3.2.1 SPY

Applying the afore-mentioned ξ-estimation procedure on SPY, it yields that H ≈ 0.16.

Given this and under the assumption that the volatility verifies the RFSV model (using

the notations of Section 2.4), Cheridito et al. [16], Section 2, provide a inverted formula to

estimate ν, the so-called volatility of volatility in the model:

V ar[log(σt)] =
H(2H − 1)ν2

α2H
Γ(2H − 1) (3.1)

where Γ(x) := 1
xΓ(x+ 1) for x < 0, x /∈ Z. In our example, using the mean value for H, we

have ν ≈ 0.23. This looks reasonable as the authors of [29] found H = 0.14 and ν = 0.3

on their SPX data ranging from 2000 to 2014: as SPX and SPY are not the same assets

but represents the same financial structure we would expect different although comparable

estimated values of H and ν. See Figure 3.1.

Figure 3.1: log(m(q,∆))/q vs log(∆): ξ-estimation procedure on real market SPY data with
OMI Realized Variance estimates. If the model were correct, we should see the parallel lines
we observe here. Here, the slopes are the estimated parameter H for each value q, similar
for all q.

3.3.2.2 OMI Datasets

Ignoring missing values, we can do the same procedure on the OMI’s Realized Library.

See Appendix D.1, Tables D.4 and D.5 respectively using Realized Variance and Realized
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Kernels. As previously mentioned, we observe that the ξ-estimation procedure gives (for the

most part) an almost monotone progression as q gets larger and on some examples like the

FTSE Milano Italia Borsa MIB30_rv, the ratio ξq/q is constant. This seems reasonable as

the data is quite limited in length so some numerical bias is expected in the estimation. On

the other hand, there is no reason why the ratio ξq/q should increase or decrease (or remain

constant in the best-case scenario) given this bias and we also see that such increasingness

is not always verified, which is entirely fine. The important observation is that all assets’

volatility seem to be best-described by a Hurst parameter comprised between 0.09 and 0.15

which implies a short-memory property which contradict the stylized fact of long-range

dependence of log-volatility. Comparing those results with the Live Data Library (Tables

D.1 and D.2), we observe three main features:

• SPX2.rv was used in [29] and we obtained very similar H estimates (they found H ≈
0.14, we are close to H ≈ 0.15 here) as they have although it was on data ranging

from 2000 to 2014 (here from 2000 to 2017). This goes in the direction of the authors’

views on why we should not be too worried about H being dependent on time at least

at on larger time scales.

• We cannot find any substantial difference in the behaviour of new assets of the Live

Data Library compared to the ones shared with Realized Library. Also, MSCI indices

perform in a similar fashion as other Equity indices.

• Across all the datasets, we can observe that Hurst exponent estimates using Kernels

are systematically larger than the estimates using Realized Variance which is what

we should expect. Indeed, a larger H implies smoother paths and from the robustness

of Realized Kernel estimates with respect to noise, they should only capture the

significant movement in price. On the other hand, Realized Variance estimates take

noise as significant movements and therefore represent rougher paths.

3.3.2.3 Other asset classes

When looking at the additional asset classes we introduced, we made the observation that

one of the particularity of the data obtained from OANDA are jumps. They come from

the fact we have access to data with a fixed time granularity (as opposed to trade-based

data like BTCUSD). Also, for example the U.S. Treasury Bonds can be largely and quickly

affected by some news coming from the U.S. Federal Reserve. To tackle this issue, we used

the Minimum Realized Variance (minRV) estimator given by Andersen et al. [4] (Prop. 1

and 2). For a signal Y of which we would like to estimate its variance:

MinRVN :=
π

π − 2

(
N

N − 2

)N−1∑
i=1

min(|Yi − Yi−1|, |Yi+1 − Yi|)2

Quoting the authors, this estimator is not particularly efficient because jumps are truncated

from the time series therefore ignoring the information they contain about the variability

of the asset. Therefore, although we cannot trust the values of H in the absolute sense,

we know that such estimator look at a smoothed version of the price path which is all we
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need. Indeed, all in all, we are interested in infering if the long-memory property holds (see

Section 3.2 for details), that is to say if H < 1/2 or not. Hence, if we obtain an estimate

Ĥ such that Ĥ << 1/2, we can reasonably hope that most accurate estimates will also

yield H < 1/2 implying such long-range dependence does not hold. Because we rely on real

data, some minRV estimates were very close to zero and we needed to redeem such values

as not consistent. To do so, we used the usual trick to ignore the values smaller than the

α-th quantile. The evidence that made us believe that our minRV estimates captured the

underlying structure behind volatility is that the value of α did not really matter in the

estimation of H as long as α > 10%. More precisely we could not notice any significant

change in the output value of our ξ-estimation procedure. Therefore, we choose to ignore

the smallest 20% of the estimates.

Finally, concerning the BTC/USD data, because it was generated after each trade two

features are observed: first, we do not have significant and large jumps because we have

access to ultra high frequency data (a few seconds maximum between each couple of data

points), therefore we do not need to use MinRV estimator. Also, we do have a good

convergence to the theoretical daily integrated variance from the abundance of data for

each day. Therefore, we chose to use the standard RV estimator.

Remark. When using the standard RV estimator on the data from OANDA, we obtain

negative values for H to cope with abrupt jump-like changes in volatility which is captured

as an extreme roughness. Of course, these results are not correct and the reason behind

this feature is the continuity assumption of the underlying price path that is required to

have a consistent standard RV estimator (briefly implied in [59] in the specific case of the

Uncertainty Zones model).

Looking at our result presented in Table D.3, we see the difference between the jump-

robust MinRV estimator and the simple RV estimator that includes noise as significant. For

the latter, we obtain reasonable values of H from 0.091 up to 0.159 that is very close to the

values we obtained from the Equity-based indices. On the other hand, for the former, we

obtain estimates ranging from 0.08 to 0.035 which seems very small. As explained above,

we cannot trust those values in the absolute sense but we can reasonably think that the true

value for H would be below 1/2. During a conference at Cornell University1, Jim Gatheral

explained using Appendix C, [29], concerning the smoothing of integrated variance estima-

tors, that a particular scaling of integrated variance could lead to values of H as small as

5%. In addition, the MinRV estimator is quite inaccurate from its tendency to be affected

by an exposure to small (zero) returns as stated by the authors Andersen et al., we believe

that the small estimated values for H are not surprising.

Note that in the rest of the report, we will focus on comparing SPY with the other as-

sets classes, namely the assets presented in Table D.3. To see a comprehensive study of the

equity-based indices, see the original paper [29].

1www.orie.cornell.edu/engineering2/customcf/iws_events_calendar/files/

RoughVolatilityCornell2015.pdf
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3.3.3 Numerical evidence of the RFSV Model

The RFSV model is not only intuitive in its construction (mean-reverting behaviour in the

log-volatility, convergence in distribution to an affine function of fBM), it is also based on

insightful observations made by Gatheral, Jaisson and Rosenbaum [29].

We can observe the following features already built in the model:

• The mean-reverting property has been thoroughly observed and studied with many

models being equipped with this propert (see [26] for a classic study of the matter).

It also relax any implicit conditions we would apply to H to fit the behaviour of the

data to let H be only there to represent roughness;

• The increments of log-volatility showcase the traditional Gaussian distribution (as

discussed by Andersen et al. [2]) and seem to verify the self-similarity property that

is central in the definition of fBM . In order to show this, we use SPY real data

as pictured in Figure 3.2. The histograms of the log-volatility increments with time

difference of 1, 5, 20 and 120 days (representing one day, a week, a month and 6

months). In addition, we plotted in green a Normal pdf fitted to the data using

standard unbiased MLE estimators for the mean and the standard deviation. Finally,

we plotted the Normal pdf obtained for ∆ = 1 day in orange, scaled using the H-self-

similarity property of fBM and the Hurst parameter estimated by the ξ-estimation

procedure. As noted in [29], we observe that the scaled and fitted Gaussians are very

Figure 3.2: SPY Data: Increments of log-volatility against Gaussian with corresponding ∆
(5, 20 or 120 days) (in green) and Gaussian for ∆ = 1 (in orange, scaled using self-similarity)

close to each other. This encourages to pick a value of the parameter α in the RFSV

model very close to 0 to achieve a good approximation given by Proposition 2.4.4.

This would model both normality and self-similarity at the same time.
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Now that we have shown why defining the RFSV model this way made sense in theory, we

can also see that the data showcases what the model would predict if it were true in terms

of covariance in both log-volatility and volatility. However, it is interesting to observe that

those properties are not universally verified across the different assets.

• Covariance of log-volatility:

Following [29] and Proposition 2.4.1, we have by stationarity for α close to zero:

Cov(Xα
t+∆, X

α
t ) = V ar(Xα

t )− 1

2
ν2∆2H +o(1) = −1

2
ν2∆2H +A+o(1), A > 0 (3.2)

Therefore, on log autocovariance against ∆2H plots , we should see a straight line with

negative slope which is exactly what we observe in Figure 3.3 for SPY and BTCUSD.

However, volatility estimates coming from the MinRV estimator, namely for XAU-

Figure 3.3: Log-volatility autocovariance Cov(log(σt+∆), log(σt)) against ∆2H : SPY data
(top-left), BTCUSD data (top-right), US 2Y Bond (bottom-left), XAUUSD (bottom-right).

USD and U.S. 2-Year Bond, are more spread out in a cone shape (in addition, other

assets like EUR-USD behaved the same way as the bottom plots but is not reported).

This said, we can still see that the general shape of a affine function seems reasonable.

• Volatility cross-moments and autocovariance:

Using Proposition 2.4.4, they also derive that approximately as α→ 0, we have that

there exists A,B > 0:

E[σt+∆σt] = Ae−B∆2H
(3.3)

This would imply that, on a semi-log scale, we shall observe a straight line for

log(E[σt+∆σt]) against ∆2H . This what we obtain in Figure 3.4 although BTCUSD
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Figure 3.4: log(E[σt+∆σt]) against ∆2H on a semi-log scale: SPY data (top-left), BTCUSD
data (top-right), US 2Y Bond (bottom-left), XAUUSD (bottom-right).

is slightly more spread out (but, again, the straight line is still capturing the general

shape). Observing that the mean of volatility is not time-dependent, we shall expect

for D > 0:

Cov(σt+∆, σt) ≈ Ae−B∆2H −D (3.4)

We can further see that a log-log scale for Cov(σt+∆, σt) against ∆ would not yield a

straight line for SPY, BTCUSD as pictured in Figure 3.5.

Figure 3.5: Volatility autocovariance Cov(σt+∆, σt) against ∆ on a log-log scale: SPY data
(top-left), BTCUSD data (top-right), US 2Y Bond (bottom-left), XAUUSD (bottom-right).
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We clearly see a downward bell shape for SPY, BTCUSD and XAUUSD which seems

to correspond to (3.4). See Section 3.5.1 to know what this entails regarding the long-

memory property. Still, it is worth noticing that the U.S. 2-Year Bond seems to be

relatively well described by a straight line which would imply a power-law decay (and

potentially, long-memory property) contradicting the Hurst parameter value below

1/2. This is probably one of the elements that hinted the authors of [29] to investigate

classical long-memory tests.

Remark. The afore-mentioned properties are all verified by the other asset classes data.

Due to length limitations, we could not report those results.

The RFSV model seems plausible from many points of view: from its built-in features (e.g.

the log-volatility fractal-like/self-similarity scaling from the fBM) to its implied properties

(e.g. covariance as α → 0) are both observed in real data. Still, it remains to compare

the real data integrated volatility paths we have against simulations of the RFSV model.

Indeed, it will let us compare directly what the model captures the autocovariance structure.

3.4 Simulation study

3.4.1 Procedure

From its definition, the RFSV model can be simulated given only the initial value of log-

volatility and the Hurst exponent. In order to do so, we need a two-step process to estimate

the fractional Ornstein-Uhlenbeck process for the log-volatility Xα and then estimate the

price process S. Following [29], we will use Euler-Maryuama discretisation scheme on the

coupled SDEs from (2.6): {
dXα

t = νdWH
t + α(m−Xt)dt

dSt = St exp{Xα
t }dWt

where W is a standard Brownian Motion and m is the initial condition on X at time 0. It

gives the following set of discrete equations:{
Xα

(n+1)δ = Xα
nδ + ν(WH

(n+1)δ −W
H
nδ) + αδ(m−Xnδ)

S(n+1)δ = Snδ + Snδ. exp{Xα
nδ}. (W(n+1)δ −Wnδ)

(3.5)

where δ represents the time interval between two intraday values of price and volatility.

We chose the granularity so that we estimate 211 = 2048 days with 214 = 16′384 intraday

timesteps. This will give us a sample path made of 225 = 33′554′432 data points to estimate

2’048 integrated variance estimates. Therefore, we chose δ = 2−14 and we set α = 5.10−4

as the tick size of our data.

For the different simulations, we use the mean value of estimated Hurst exponents for

q = 0.5, 1, 1.5, 2, 3 as in [29]. More precisely, we used:

SPYUSD BTCUSD EURUSD XAU WTI US 2Y US 5Y US 10Y

H 0.157 0.133 0.035 0.048 0.078 0.041 0.047 0.043

Table 3.1: Estimated Hurst exponents for each asset used in the simulation.
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Remark. The spot volatility for day k is defined and approximated by:

σtk := exp{Xα
tk
} ≈ 1

δ

∫ tk+δ

tk

σ2
sds (3.6)

where δ is the aggregating time given by the estimation method.

To estimate the integrated variance, we used the following procedure:

1. Generate the theoretical - unobserved - price path S;

2. Generate observed prices with the model with Uncertainty Zones (UZ) for high-

frequency data for tick size α = 5.10−4 and uncertainty band width η = 0.25 designed

by Robert and Rosenbaum [59] (see Appendix C);

3. Using those observed prices, estimate:

• daily UZ integrated variance with one hour of data (δ = 1/24; from 10AM to

11AM) (see again Appendix C);

• daily standard realized variance (RV) for 8 hours of data (δ = 1/3; from 8AM to

4PM);

To simulate the fractional Ornstein-Uhlenbeck process, we used the R package yuima [13]

based on the YUIMA project which is very impressive in efficiency and content. More

precisely, we relied on the celebrated Gaussian process simulation method by Wood and

Chan [67] which is itself based on the characterizing Gaussian covariance structure and the

formation of a so-called circulant matrix, a specific case of a Toeplitz matrix. This allows

a discrete Fourier transform implementation as used in the original paper [29].

Other alternatives include the fArma [68] or the somebm [36] packages. The former pro-

poses various implementation of fBM generation whereas the latter uses a spectral scheme

(Fast Fourier Transform) that is very convenient to use for large path simulations.

3.4.2 Testing the simulation paths via autocovariance function

The idea here is to take the real market data for each asset and compare with the simulated

paths to see if the RFSV model capture the autocovariance structure. Indeed, this is the

main reasoning behind the original paper [29]. We study their ACF up to lag 100 as follows:

• On SPY, BTCUSD, U.S. 2-Year Bond and XAUUSD (Figure 3.6):

We note that, as stated in [29], SPY market data and simulation look very much

alike. This has driven the authors to the conclusion that they had found a model

based mostly on a few parameters including the Hurst exponent that could reproduce

statistical properties of a whole price path. However, we observe here the limit of such

model: indeed, we have that XAUUSD and US 2-Year Bond have Hurst parameters

that are very close to each other. Because ν depends solely on H (as in (3.1)), the

whole path is mostly determined by H in the RFSV model. When simulated using the

same seed, we see that the simulated path share the same autocorrelation properties

and do not showcase any sign of seasonality. However, with real market data, they
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are quite different from each other from the way the ACFs decrease to how strong the

weekly seasonality is. Indeed, real market US 2Y Bond ACF is almost constant at 1/2

whereas XAUUSD ACF shrinks rapidly to zero. In addition, real market BTCUSD

ACF plummets to zero whereas its simulation is very close to SPY - decaying slowly,

again this is due to the fact that their Hurst parameters are very close to each other!

This is one of the limit of the RFSV model. We explain this fast decay by the trading-

wise immaturity of the BitCoin market: it is not a central as an asset as the U.S. Bond

for example. Indeed, the latter has an almost constant ACF of 1/2 since those bonds

are essentials in financial markets (many people actively manage their portfolio of

bonds every day).

Figure 3.6: ACF up to lag 100 for the log-volatility (solid) and the differenced log-volatility
(dashed) for both market data (TOP) and simulated data (BOTTOM).
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This said, we did not expect seasonality to be replicated by the RFSV since it has

never been considered in its design in [29]. However, an extension using external

regressors could be implemented.

• The special case of EURUSD (Figure 3.7):

The RFSV model can also be very effective for other assets than equity: we observe

that both real and simulated EURUSD paths resemble each other, much more than

any other couple of paths.

Indeed, in Figure 3.7, we notice the weekly seasonality which may be explained by

Figure 3.7: ACF up to lag 100 for real market (blue) and simulated (red) EURUSD rate:
an example of an asset which is well-described by the RFSV model.

the adjustment pre and post-weekends which are the only times when FX markets

are closed. However, unlike XAUUSD, this does not prevent the ACFs to present the

same speed of decay. This indicates that the asset class may not be the most relevant

way to classify asset in the context of the RFSV model. Indeed, the model may fail

due to inherent characteristics of the assets but could be features that can be shared

among different classes.

3.4.3 Testing the ξ-estimation procedure

We can now check whether the simulation yields a correct Hurst parameter when we ap-

ply the ξ-estimation procedure. We obtain relatively good estimates depending on which

measure of volatility we use. As explored by Gatheral et al. [29] and explained by their

Appendix C on scaling of volatility, we observe that the UZ variance has some positive bias

and the RV variance has an even larger positive bias. Indeed, as they explain: the longer

we wait, the larger the bias is. Explicitly, we compute an approximate to the spot volatility

using the mean value as in (3.6): the integral plays its smoothing role on the integrand

as we wait longer, making the path seen by m(q,∆) smoother than in reality. This would
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lead to over-estimating H. This initiates a trade-off: we want to wait sufficiently long to

have estimates close to the true IV values, however, we do not want to wait too long since

those IV values would be positively biased. For instance, with SPY simulated path, we

should be getting H ≈ 0.16 but we obtain HUZ ≈ 0.185 and HRV ≈ 0.21. See Figure 3.8

where the slopes H of the RV estimates (dashed lines) are larger than the slopes of the UZ

estimates (solid lines) for each value q. We use δ = 1/24 for the UZ method and δ = 1/3

for the standard RV method hence the difference in bias. However, we do obtain parallel

lines showing that the estimated Hurst exponents is approximately constant across values

of q as desired.

Figure 3.8: log(m(q,∆))/q vs log(∆): ξ-estimation procedure on simulated SPY data. LHS:
UZ integrated variance estimates; RHS: RV integrated variance estimates. Slope of each
line is the estimated Hurst exponent H: we find HUZ ≈ 0.185, HRV ≈ 0.21.

Concerning the other assets, all computations are consistent with what we would expect

from the above-mentioned explanation on bias and Table 3.4.1 hence we omit the details

here.

Remark. Note that the ξ-estimation procedure gives a Hurst parameter that is essential

in the scaling of increments of log-volatility. However, it remains uncertain if a linear link

between H and ξ should suffice to model properly the data. To test this hypothesis, Gatheral

et al. [29] detail this relationship by computing m(q,∆) for many values of ∆ and q and

simply plot ξq against q. For SPY and BTCUSD data, we obtain quite different results as

we can see in Figure 3.9 below:
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Figure 3.9: ξq against q: SPY data (LHS), BTCUSD data (RHS). Fitted straight lines in
colour, ξq in dotted lines.

For the BTCUSD data, we see a convex curvature which seem to indicate that ξq ≈ qH
is inaccurate even as a first order assumption. After testing on different data sets, we

made the same observation as the authors did: The smaller the dataset the stronger the

curvature. Here, the SPY data contains 2242 data points against 2050 for BTCUSD. Also,

when shrinking down the size of the data set of the EURUSD data set from 3700 data points

down to 2000, we obtain roughly the same curvature as for BTCUSD. However, it is worth

noticing that the curvature need not be convex (for example, the EURUSD data showcases

concave curvature).

3.5 Long-memory tests

We shall revisit the arguments and tests of [29] to see that if the model is misspecified, the

data can be shown to verify properties that we know are not true or leading to contradictory

conclusions. Those tests are mostly based on the work of Andersen-Bollerslev-Diebold-

Ebens/Labys ([1], [2], [3]). However, when exploring other asset classes, some of the results

obtained were not as clear as it appears in the original paper and sometimes in a surprising

way. First, we are interested in power-law decay in the autocovariance function.

3.5.1 Failure of the Power-law method

Investigating the power-law decay in the autocovariance function is the most classical way

to determine if the (log-)volatility process exhibits long-range dependence. As noted in

Remark 3.2.2, if the autocovariance function of the spot (log-)volatility decays as a power

law since it would ensure we verify the long-memory property. More precisely, we look for

a behaviour of the following functional form:

Cov(Yt+∆, Yt) = A∆−γ +B, A, B ∈ R (3.7)

with 0 < γ < 1 and Yt = log(σt) or Yt = σt. It is a way to formalise that we would like

the autocovariance function to slowly decrease to zero as ∆→ +∞, slowly enough so that

Definition 3.2.1 is verified.

When looking at our market data, we observe that such observation cannot be made for

SPY, BTCUSD, XAUUSD, U.S. 2-Year Bond as opposed to the what is widely taken as
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granted. Indeed, in Figure 3.3, we obtain straight lines consistent with the RFSV model

(as in (3.2)) - that is, log-volatility autocovariance as an affine function of ∆2H :

Cov(log(σt+∆, σt)) ≈ A′∆2H +B′

However, it clearly shows that (3.7) is not suitable here since the exponent is positive. In

Figure 3.4 where we observe the desired volatility autovariance function up to an additive

constant, we note again that we do obtain the necessary straight lines given by the RFSV

model in (3.3) (since we are in semi-log scale). This also rejects (3.7) and the inverse

relationship between Cov(σt+∆, σt) and ∆ we would have needed for long-memory. To

conclude, neither the log-volatility or the volatility have a power-law with negative power

in the acf. If there is a power-law decay, it is with positive power.

We conclude that we do not have a power-law decay in the autocovariance function capable

of yielding long-memory property. This associated with the fact that H < 1/2 for all

assets, we conclude that we do have short-memory property for all of them. Note that, as a

necessary but not sufficient property, not having the right power-law decay is not sufficient

to prove short-memory in itself.

3.5.2 Variance of Realized Variance method

In [1] Section 4.1 / Figure 6, Andersen et al. propose to model volatility as a multivariate

continuous-time stochastic volatility diffusion defined as follows:

dσt = µtdt+ θtdWt, with Wt a standard BM

where µ is predicable and integrable and θ square-integrable process. Therefore, σ is directly

taken to be a continuous local martingale which is not the case in our study due to fBM

itself which is not even a semi-martingale.

They design the following long-memory test:

1. Compute the variance of the integrated variance over [0; t] using intermediary points

to a sequence (V ar(IV, ti))
N
i=1, with 0 ≤ t1 < · · · < tN = t;

2. Regress this sequence on t 7→ t2−γ ;

3. If 0 < γ < 1 then we conclude the integrated variance has long memory property -

otherwise, short-memory.

This is based on the authors’ result that if the variance of the integrated variance over [0; t]

behaves approximately as t2−γ for γ < 1, then the log-volatility autocorrelation function is

proportional to t−γ . Formally, we define the variance of the integrated variance as follows:

V ar(IV, t) := V ar

(∫ t

0
σ2
sds

)
The results for our dataset are as expected for the most part, however we may make two

observations given Figure 3.10 and Table 3.5.2.

More precisely, with real data, we largely verify the above-mentioned long-memory test for

SPY, XAUUSD, U.S. 2-Year Bond and all other assets considered (except BTCUSD). This
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Figure 3.10: Variance of Integrated variance V ar(IV, t) against t on a log-log scale for real
and simulated data (resp. top and bottom plots). From left to right, SPY, BTCUSD , US
2-Year Bond, XAUUSD.

would imply wrongfully that our data verifies long-memory property which is in contradic-

tion with the estimated Hurst exponent being below 1/2.

However, for BTCUSD, we barely achieve it as γ is found to be 0.997 ! We can see that

SPY BTCUSD U.S. 2-Y Bond XAUUSD

Market data 0.265 0.997 0.212 0.238
Simulated data 0.177 0.213 0.283 0.281

Table 3.2: Estimation of γ in the Variance of integrated variance method

such power-law method on the scale of variance of integrated variance is not suitable to all

datasets as we are clearly at the limit where we should keep in mind that there is some

uncertainty around the estimation of γ. Also, proving that BTCUSD log-volatility auto-

covariance function does not decay as a power-law is not sufficient to show that we have

the short-memory property. It is worth noticing that for the U.S. 2-Year Bond, the real

data shows a slight convex shape inconsistent with the straight line we should obtain: this

method is then not well-suited for all log-volatility datasets. Indeed, we observe more than

simply the value of γ which is not covered by the test itself and might lead to inconsistent

result if not property addressed.

On the simulation side, we see that our paths all largely verify γ < 1 which is in total

contradiction with the fact that H << 1/2 for all simulations.

Remark. Notice how resemblant the real and simulated data plots are for all assets (except

U.S. 2-Year Bond and its convex shape). Also, we can appreciate how contradictory the
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conclusions are compared to Section 3.5.1. This emphasizes how fragile those tests are

regarding model misspecification.

3.5.3 Fractional differentiation method

In another publication from Andersen et al, [3], they model in Proposition 3 the logarithmic

price process P (t) as a square-integrable process such that:

dPt = µtdt+ σtdWt, with W a standard BM

where µ is a predicable and integrable process. For σ, they do not define it explicitly but

assume it is a square-integrable process on R+. As measure of volatility, they take the

quadratic return variation on [t; t + h] which is equal to
∫ h

0 σ
2
t+sds at time t. Recall that

in our RFSV model, the dynamics of volatility σ yield that it is not square-integrable for

semi-infinite interval.

Let L be the standard backward operator: LXn := Xn−1. They make the observation that

long-run dynamics of realized logarithmic volatilities are well approximated by a fractionally-

integrated long-memory process (page 3, [3]). They design a test for the long-range depen-

dence in the volatility based on the following result:

if the fractionally differenced log-volatility εt := (1− L)dlog(σt) with d = 0.4 behaves as

white noise, then the volatility exhibits the long memory property.

Remark. We take as definition for White Noise the following from Walden and Percival [55],

p. 268: {ηt} is a sequence of pairwise uncorrelated RVs, each with the same mean (usually

taken to be zero) and the same variance.

They conduct numerical experiments to find the optimal value for d using Geweke and

Porter-Hudak GPH estimator [30], formalized and extended by Robinson [60]. Andersen et

al. found that d ≈ 0.4 was a reasonable value for their data and the authors of [29] used it

in their study under the assumption that such data was the same. However, we notice that

the original paper was written more than twenty years ago and markets have undergone

severe changes in trading timescale which might have affected the structure of the data.

Also, using the R package fracdiff [52] and their implementation of the GPH estimator,

we came to the conclusion that d = 0.55 was probably more suitable. Although we did

try d = 0.55 on our data and saw that the fractionally differenced time series were closer

to the behaviour of a white noise, we only report the case d = 0.4. Indeed, the argument

of Andersen et al. does not hold if d > 1/2 and since we would like to compare with the

results of Gatheral et al. [29], we decided to continue to use d = 0.4.
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Lag SPY BTCUSD US 2Y Bond XAUUSD EURUSD

1 2e-5 1e-4 0 0 0Market
data 10 0 2e-6 0 0 0

1 0 2e-7 0.05 0.14 0Simulation
data 10 0 0 0.16 0.17 0

Table 3.3: Ljung-Box test statistics on differenced log-volatility with d = 0.4, lag as in
Definition 3.2.1

Therefore, we observe a couple of features in Table 3.5.3: to begin with, none of the

observed datasets exclude non-zero autocorrelation in the differenced log-volatility time

series. This said, SPY and BTCUSD are the closest to fail to reject the null hypothesis of

uncorrelation. This would normally exclude that εt behaves as white noise. Moreover, we

notice that with the simulated datasets do not have the same behaviour: we do not have

enough evidence to show that εt is not autocorrelated - a necessary condition to be white

noise - for SPY, BTCUSD and EURUSD. On the other hand, the simulated U.S. 2-year

Bond and XAUUSD fail to reject non-autocorrelation at lags 1 and 10 with 95% significance

which suggest white noise behaviour happens sooner than with other assets. From a more

qualitative point of view, plotting the differenced log-volatility showcases approximately

constant mean and variance for all datasets, from market or simulated.

We can now complement this study with a more graphical approach: ACF plots for the

first 100 lags of the differenced log-volatility εt.

• On SPY, BTCUSD, U.S. 2-Year Bond and XAUUSD (Figure 3.6):

For differenced time series from real data, we observe a few spikes at smaller lags due

probably to unaccounted seasonality (e.g. we retrieve 5-6 days between each spike of

XAUUSD). This said, ε falls rapidly within the 5% Bartlett error bands yielding the

autocovariance function is statistically insignificant with 5% significance level across

all 4 assets. We conclude that the real data passes this long-memory tests, although it

could be confirmed by taking into account seasonality (via external regressors). Since

they did not do such treatment in [29], we chose to let the time series as they were

originally.

For the data generated by the RFSV, the results is even clearer: here, no sign of

seasonality so no unexpected spikes. The differenced time series all fall within the

Bartlett errors after lag 10. This is complemented by Table 3.5.3 and the nice results

for U.S. 2-year Bond and XAUUSD. Therefore, our model let us create time series

which are strongly short-range dependent (H ranging from 0.035 to 0.157) but still

pass with confidence this long-memory test.

• The special case of EURUSD (Figure 3.7):

Concerning the asset which was the most satisfying in terms of ACF fit with real

data, we see that we have large spikes in the real data differenced time series which

shows that we cannot redeem this time series as insignificant. Therefore, we can see

here that we fail to pass the test but it is more an artefact from an incomplete data

preparation (no handling of seasonality) than any insightful result about the data.

On the other hand, the model-generated data still proposes statistically insignificant

differenced time-series ε suggesting that there is long-range dependence in the log-

volatility although H ≈ 0.05 and no power-law decay in the ACF.
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To conclude, ignoring the bumps in the ACF of εt due to the seasonality, we can see

across all datasets (except real data for EURUSD) that the fractional differentiation made

the ACF fall into the 5% Bartlett error bands quickly, revealing that they are no longer

significant at least at large lags (> 20). This means that (εt) behaves like white noise in

a weaker fashion - for larger time scales - suggesting long-memory behaviour in the log-

volatility. We saw that the RFSV-generated data could pass without hesitation Andersen

et al. long-memory test based on the differenced log-volatility. From the second-order

stationarity of εt to the pairwise uncorrelation at larger lags, we can say that it is plausible

that a given time series appears to have long memory whilst being inherently short-range

dependent and this even for extreme values of H << 1/2. We explain this through model

misspecification.
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Chapter 4

Forecasting Volatility

Forecasting volatility is an extremely popular topic and has raised many questions as it

requires to understand how previous information from the market can help know better the

future moves. This is in itself a problem: how to estimate volatility in a consistent manner?

Across the millions of datapoints we used for this report, a question was consistently present:

What scaling should we apply? What scaling has been applied?

Those questions are generally not linked to volatility forecasting (e.g. auto-regressive (AR)

models are not sensitive to scaling). However, in the RFSV model, we will see the predicting

volatility can be done with fewer data (compared to benchmark model like AR models)

but, instead, the problem is transferred to the (mechanical) estimation of an integral. The

problem is that that we would need intermediary data (which we do not have access to) to

better approximate this integral via linear interpolation. From Proposition 2.4.1, as well as

[29], Section 5, we have that in the RFSV model:

log(σ2
t ) ≈ 2νWH

t + 2XH
0 , for C ∈ R

Using this and the prediction formula given in Theorem 2.6.1, for a forecast horizon ∆ > 0,

we have:

E[log(σ2
t+∆)|Ft] =

cos(πH)

π
∆H+1/2

∫ t

−∞

log(σ2
s)

(t− s+ ∆)(t− s)H+1/2
ds (4.1)

The result (4.1) is a very nice way to express the fact that we need the infinite past to

predict the future. However, practically speaking we cannot do that. Here, we have two

choices: we could try to estimate increments that would prevent us from having the estimate

the infinite past. In this particular case, we truncated the integral to control the accuracy

and prevent infinite-horizon estimations. Recalling Theorem 2.6.1, Gatheral, Jaisson and

Rosenbaum use a reformulation that unfolds as follows:

E[log(σ2
t+∆)|Ft] =

cos(πH)

π

∫ +∞

0

log(σ2
t−∆u)

(1 + u)uH+1/2
du (4.2)

We then can use our natural intuition with positive numbers to find r such that for a given

δ > 0, we have: ∫ +∞

r

1

(1 + u)uH+1/2
du ≤ δ
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Remark 4.0.1. In the original paper [29], they advice to use r = 1 so that δ ≈ 0.35. However,

when trying to estimate the integral, we found that r = 10 let us use δ = 0.35. Finally, they

judge 0.35 as being reasonable but we think it might be necessary to say that such error is

reasonable given the scale of the volatility they are trying to predict. Indeed, we observe

large change in accuracy of this method when the log-variance was large in the absolute

sense. To prevent this, we always subtracted the mean to the log-volatility to center it

better around zero. Also, we used r = 40 as an attempt not to rely on the volatility scaling

(see discussion of results below on why it matters).

We are going to consider three different prediction horizons: 1, 5 and 20 days. We

will compare our model with three other models: AR(5), AR(10) and Corsi’s HAR(1,5,20)

model [20]. It is worth noting that, as written by Gatheral et al., GARCH model is not

considered since Andersen et al. [3] proved that high-frequency realized volatility forecasts

outperform daily returns-based forecast methods like GARCH. The AR and HAR models

take the following functional form:

AR(p): ̂log(σ2
t+∆) = K∆ +

p∑
i=0

A∆
i log(σ2

t−i)

HAR(n,m,l): ̂log(σ2
t+∆) = K∆ +A∆

nRM(log(σ2
t ), n) +A∆

mRM(log(σ2
t ),m)

+A∆
l RM(log(σ2

t ), l)

where RM(log(σ2
t ),m), m ∈ N are the m-rolling mean from t backwards:

RM(log(σ2
t ),m) :=

1

m

m−1∑
i=0

log(σ2
t−i)

To estimate the coefficients of the AR models, we used 500-day rolling windows along with

the stats R package [58] and the Yule-Walker numerical procedure. For the HAR model,

we wrote our own fitting method based on Corsi’s least squares estimation in [20] for each

forecast horizon. Also, the rolling means take intermediate predicted values as true to

compute the next steps. Finally, for the RFSV predictions, we used a linear interpolation

between variance estimates to approximate the integral via its Riemann sum. We also

split this approximation into two chunks found empirically. The first one approximates the

singularity at zero by having its first point at x = 2−17 and then 217 points between 2−11

and 2−4. After that, we used 211 for every unit of length.

This procedure could be improved using the works of Bennedsen et al. [10] or simply using

interpolation schemes for fBM given is the original paper by Mandelbrot and Van Ness [44].

This said, we wanted to compare with the results in [29] and that they just mention a simple

Riemann-sum approximation, we did not want to add additional features.

Remark. The HAR(n,m,l) model attempts to capture three different structures: (n,m,l) are

usually taken to represent a day, a week and a month, hence (1,5,20). In our experiments,

it has shown to be very powerful to adapt to seasonality without having the fit external

regressors. In addition, we chose p = 5 and p = 10 because they were respectively global

and local AIC minima for SPY data (as they chose in [29]).
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We take the comparing framework proposed in [29] based evaluating P defined as:

P :=

∑N−∆
k=500

(
log(σ2

t+∆)− ̂log(σ2
t+∆)

)2

∑N−∆
k=500

(
log(σ2

t+∆)− E[log(σ2
t+∆)]

)2
where E[log(σ2

t+∆))] is the empirical mean on the entire dataset. This is quick way to

estimate the remaining/unexplained variance in the tested model.

In the original paper [29], they demonstrate the predicting power of their RFSV model

with very successful cases where RFSV forecasts outperform almost every time the three

other models. Indeed, in the Live Data Library, for the originally tested SPX2.rv, FTSE2.rv,

N2252.rv, GDAXI2.rv and FCHI2.rv datasets, RFSV is the best predicting model. However,

when testing on 15 assets of this library, on both realized variance and realized kernels (on

three horizons leading to 90 individual tests), we found out that the battle between HAR and

RFSV models is more even. 44% of the cases were dominated by the HAR model. Equally,

the RFSV model was the best performing model in 44% of the cases. This leaves only 2%

of the cases to the AR models (one for AR(5), one for AR(10)). Also, RFSV forecasting has

a slight advantage when dealing with realized variance against HAR as opposed to realized

kernels. However, we could not spot any difference concerning the impact of the forecast

horizon ∆. This said, the best performances of the HAR model are for ∆ = 5 which is the

intermediate structure it tries to capture (as an (1, 5, 20) model).

As shown in Table D.7, it is also possible to find data (here prepared using HEAVY volatility

model) where RFSV performs consistently better than AR and HAR models - although the

difference is quite small. It is worth noticing that one of the types of assets for which RFSV

performs better are assets that do not showcase seasonality or fast decay in the acf (like

BTCUSD).

Finally, on our new dataset containing other assets classes (see Table D.6), the HAR model

outperforms our RFSV model by far. This partially due to the construction of the HAR

model: with the rolling means, it is easier to capture a sense of seasonality, particularly as

weekly movement are directly represented by the second rolling mean (m = 5). Also, its

simple 3-element structure limits over-fitting as well as presenting the three time horizons

we are interested in.

We conclude that method used to estimate volatility is key to picking the right forecasting

model. Additionally, having data centred around zero seems to be central in obtaining the

best performances from the RFSV model and could lead to further investigations.

It is also worth noticing that the HAR model is simple and seems to benefit from flexibility

regarding the data used. However, using from 10 to 40 datapoints only (via r), our RFSV

predictions performs as well as the HAR model that required more than 500 points to be

fitted! Note that increasing even further r did not improve significantly the predictions.

Also, for both the AR and the HAR models, coefficients should be changed anytime we

would like to predict at another time horizon ∆ or with the arrival on some fresh data

which both require a new regression. On the other hand, the RFSV model just requires us

to move forward the rolling window in the integrand for the Riemann-sum approximation.
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Chapter 5

Conclusion

In this report, we have presented Gatheral, Jaisson and Rosembaum’s RFSV model includ-

ing the proofs of its distributional properties as well as their Hurst exponent estimation

procedure. We proposed some reformulated arguments in which we proved a new conver-

gence in probability of the moment estimator (Appendix B, Section B.6) that was assumed

in the original paper [29] and a corrected argument for the proof of Proposition 2.4.1 which

previously relied on an incomplete statement for the case H < 1/2.

Additionally, we extended their numerical experiments, primarily based on equity, to other

classes : Foreign Exchange rates, Fixed Income and Commodities. By comparing market

and simulated data, we have noticed that the RFSV model may or may not capture entirely

the autocovariance structure independently of the asset classes: either in terms of speed

of decay in the autocovariance function (ACF) or handling of seasonality. For example,

RFSV seems indicated for BTCUSD when looking graphically at the autocovariance func-

tion (Figure 3.3) however simulated data shows that the ACF does not decay fast enough

to replicate market data. On the other hand, EURUSD presents signs of seasonality but it

still very well described by the RFSV model. We explain this from the fact that the RFSV

model is essentially governed by one parameter, the Hurst exponent H. Therefore, when

considering two assets with two estimated H values fairly close to each other, the model

will have the same behaviour for both assets although they might be very different intrisic

properties (e.g. XAUUSD showcases seasonality, U.S. 2-year bond has an almost constant

ACF of 1/2 but both have Hurst parameters around ≈ 0.05). We also noticed that their

Hurst parameter estimation procedure was sensitive to the variance estimation method and

scaling - essentially, data quality and consistency. Indeed, a jump-robust variance estima-

tor like the minRV estimator (see[4]) does not necessarily filter out all the unsignificant

roughness in the volatility path compared to the standard Realized variance estimator on

a smoother path. One other aspect of this exposure to scaling is forecasting as opposed to

usual stastical models like AR models or the very efficient HAR model ([20]) which are not

sensitive to this. However, we concluded that, although RFSV forecasting needs rescaling

to be as competitive, it performs well. Indeed, we centered the log-variance around zero

by subtracting by its mean. We also tried to maintain the same order of magnitude across

all log-variance datasets. All in all, we obtained good results as in [29] but not universally

as convincing as stated in the original paper. More precisely, the fight between HAR and
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RFSV models is closer than they thought: we tested on more than 20 assets, using when

available both Realized Variance and Kernels (for OMI datasets), over three different hori-

zons (1, 5 and 20 days) and found that both models were indistinguishable.

Our final words are that the RFSV model is simple, quite flexible and proposes good results

on a selection of assets which does not show sign of seasonality in volatility for example.

Extending their model using external regressors for example might be useful to generalize

it to such seasonal assets. Their estimation procedure for H is convincing by its simplicity

and well-known behaviour regarding the underlying volatility estimation. It is well-suited

to study statistical properties of the assets but for further use of Hurst exponent in pricing

for example (Jacquier et al. [38]) or asymptotic expansions (Bayer et al. [8]), one might be

interested in having a better statistical understanding of their procedure to know precisely

its limits. This said, it is still an open question whether or not such results can be obtained.
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Appendix A

Mandelbrot and Van Ness
representation of fBM

Suppose that WH verifies Definition 2.3.1. We will assume that WH is well-defined first

and provide an argument in Lemma A.1.8. The purpose of this part is to show that the

definition from Mandelbrot and Van Ness yields to same properties as in Definition 2.2.1.

A.1 General results using the representation

Mandelbrot and Van Ness made the insightful observation that the Hurst exponent must be

in [0; 1[ by definition. Indeed, the increments of the reduced fBM verify the self-similarity

property (see Definition 2.3.2). We will go over the details of this self-similarity feature for

the specific case of fBM in Lemma A.1.3.

Lemma A.1.1. WH is H-self-similar.

Proof. Let t ∈ R, a > 0, ω ∈ Ω. Using the change of variable s 7→ au

WH(at)
d
=

1

Γ(H + 1/2)
aH−1/2

{∫ 0

−∞
[(t− u)H−1/2 − (−u)H−1/2]dW (au, ω)

+

∫ t

0
(t− u)H−1/2dW (au, ω)

}
d
=

aH−1/2√a
Γ(H + 1/2)

{∫ 0

−∞
[(t− u)H−1/2 − (−u)H−1/2]dW (u, ω)

+

∫ t

0
(t− u)H−1/2dW (u, ω)

}
using dW (au,−)

d
=
√
adW (u,−)

d
= aHWH(t)

Remark A.1.2. Using H-self-similarity, observe that for any ω ∈ Ω, t ≥ 0, q ≥ 0, we have

the pointwise equality:

WH(t, ω) = tHWH(1, ω)

Following [44], Theorem 3.3:
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Lemma A.1.3. The increments of WH are stationary.

Proof. Without loss of generality, let t2 > t1 ≥ 0. Then, from Definition 2.3.1 and station-

arity of standard Brownian Motion increments:

WH(t2, ω)−WH(t1, ω) =
1

Γ(H + 1/2)

[∫ t1

−∞
(t2 − s)H−1/2 − (t1 − s)H−1/2dW (s, ω)

+

∫ t2

t1

(t2 − s)H−1/2dW (s, ω)

]
d
=

1

Γ(H + 1/2)

[∫ 0

−∞
(t2 − t1 − u)H−1/2 − (−u)H−1/2dW (u, ω)

+

∫ t2−t1

0
(−u)H−1/2dW (u, ω)

]
d
= WH(t2 − t1, ω)

So, WH has stationary increments.

Here again, equality is in distribution. Finally, we will look into the following proposition

regarding the Hurst exponent possible values directly from Definition 2.3.1 of the reduced

fBM:

Lemma A.1.4. If X(t, ω) has H-self-similar and stationary increments and is mean-square

continuous, then 0 ≤ H < 1.

Proof. The intuition behind this proof is the application of Minkowski’s inequality for the

upper bound as well as using the mean-square continuity ofX for the lower bound. Formally,

for any τ ≥ 0, we have by self-similarity of increments:

E[(X(t+ τ)−X(t))2] = τ2HE[(X(t+ 1)−X(t))2] = τ2HE[X(1)2] (A.1)

where the last step comes from stationarity of increments. Define V := E[X(1)2]. Hence,

for t1 ≥ 0, t2 > 0, using the trivial telescopic sum and Minkowski’s inequality:

E[(X(t+ t1 + t2)−X(t))2]1/2 ≤ E[(X(t+ t1 + t2)−X(t+ t2))2]1/2

+ E[(X(t+ t1 + t2)−X(t+ t2))2]1/2;

Therefore, applying (A.1) for, respectively, τ = t1 + t2, t1 and t2, we obtain:

V 1/2(t1 + t2)2H/2 ≤ V 1/2(t
2H/2
1 + t

2H/2
2 )

Under the assumption that X(1) ∈ L2 so that V is finite, we can conclude that:

[t1 + t2]H ≤ tH1 + tH2

and that, by the theory of Minkowski’s inequality, equality is attained (by equivalence,

meaning that H = 1) if and only if X is a trivial process since the times τ, t1, t2 are arbitrary.
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fBM is obviously not trivial therefore H < 1. Mean-square (m.-s.) continuity gives that

H ≥ 0. Otherwise, using (A.1) and m.-s. continuity on the LHS:

0
0+←τ←−−−− E[(X(t+ τ)−X(t))2] = τ2HE[X(1)2]

τ→0+−−−−→ +∞

which is a contradiction, implying that H ≥ 0. This said the case H = 0 is trivial and will

not be included in our general discussion.

Remark A.1.5. Regarding the application of Lemma A.1.4 to the reduced fBM, it is clear

the mean-square continuity is ensured by the continuity of integrals for t > 0 after using

Itô’s isometry and the dominated convergence theorem to have the variance of an increment

shrink to zero.

In addition, as stated by Mandelbrot and Van Ness in [44], fBM verifies the assumptions

of Kolmogorov’s continuity theorem that ensures the existence of a continuous substitute

to fBM that is continuous and a.s. equal to the fBM itself for a time t in a compact

set (Proposition 4.1 of the original paper). This yields that almost all sample paths of

t 7→ WH(t, ω) are a.s. continuous for a time t in a compact set. Kolmogorov-Čentsov’s

continuity theorem was stated in Karatzas and Shreve [41] (Theorem 2.8, page 53) as

follows:

Theorem A.1.6. Kolmogorov-Čentsov’s continuity theorem

Suppose that a process (Xt)t∈[0;T ] on a probability space (Ω,F ,P) satisfies that there exist

some positive constants α, β and C:

∀s, t ∈ [0;T ], E[|Xt −Xs|α] ≤ C|t− s|1+β (A.2)

Then, there exists a continuous modification X̃ := (X̃t)t∈[0;T ] of X which is locally Hölder-

continuous with exponent γ for any γ ∈]0;β/α[, i.e. there exists δ > 0 such that:

P

 sup
0<t−s<h(ω)
t,s∈[0;T ], ω∈Ω

|X̃t(ω)− X̃s(ω)|
|t− s|γ

≤ δ

 = 1

where h is an a.s. positive random variable.

Remark. The result can be generalised to any compact positive set in (R, Tstd) where Tstd
is the standard topology generated by intervals {(]a; b[) : a < b ∈ R}.

Therefore, we can formulate the following result:

Lemma A.1.7. Almost all path t 7→WH(t, ω) are continuous.

Proof. To verify that we can apply Theorem A.1.6 to fBM with H < 1/2, we can replicate

the proof from Mandelbrot and Van Ness [44] (Proposition 4.1). Let 0 < k < H (so that

H/k > 1) and s, t ∈ [0;T ] (w.l.o.g. s < t), then from H-self-similarity and stationary

increments properties, we have:

E[|WH(t)−WH(s)|1/k] = E[|t− s|H/k|WH(t− s)|1/k] ≤ C|t− s|H/k
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where the last step is obtained using Hölder’s inequality with q = 2/k > 1 and the fact

that X = 1 ∗X. By Itô’s isometry on the integral representation of WH and since T <∞
(or from the fact that any compact set in (R, Tstd) is bounded), we know that C < ∞.

Explicitly, α = H/k, β = H/k − 1.

Remark. Very interestingly, Decreusefond and Üstünel (Theorem 3.1, [23]) derived that in

general, the sample paths of fBM could only be a.s. Hölder continuous of order less than

H.

Lemma A.1.8. WH is a well-defined centered Gaussian random variable.

Proof. Under the assumption that the process is well-defined, it is centered as sum of

integrals w.r.t Brownian Motion.

Many references in the literature (e.g. [51], [47]) take this result as given but one can notice

that Mandelbrot and Van Ness themselves in their classic paper [44] do not compute the

variance explicitly and leave it as an integral. It is quite technical and requires to use a

reformulation of the beta function on the semi-infinite interval [0; +∞[ after using Itô’s

isometry on the independent increments of the Brownian Motion. However, we only need

to have the variance at time 1 by self-similarity of the increments (Remark A.1.2). From

Norros et al. [47], page 2, we obtain:

E[(WH
1 )2] =

Γ(H + 1/2)Γ(2− 2H)

2HΓ(3/2−H)
(A.3)

We take the square-root of this to normalise the variance at time 1. By H-s.s, the variance

at time t is proportional to t2H .

Therefore, we have that the reduced fBM has finite variance for T < ∞ and is a sum of

stochastic integrals with respect to standard Brownian Motion. From the fact that the

space of Gaussian random variables are closed under countable sum (closed linear space),

it has to be the case that WH is a (centered) Gaussian.

Finally, we need to find the covariance structure verified by WH to complete its charac-

terisation as a Gaussian process. Suppose we have normalised the variance of WH at time

1. Therefore, for s, t ∈ R, (w.l.o.g s < t):

E[WH(t)WH(s)] =
1

2

[
E[(WH(t))2] + E[(WH(s))2]− E[(WH(t)−WH(s))2]

]
Then, we have by H-s.s. and stationarity of increments:

E[WH(t)WH(s)] =
1

2

[
t2H + s2H − |t− s|2H ]

]
(A.4)
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A.2 Equivalence between fBM and its representation

The equivalence between two stochastic processes is usually defined using the equality of

finite-dimensional distributions: Let X := (Xt)t∈[0;T ] and Y := (Yt)t∈[0;T ] be two stochastic

processes. Then X is equivalent to Y if and only if, for all n ∈ N∗ and for all 0 ≤ t1 < · · · <
tn ≤ T :

(Xt1 , . . . , Xtn)
d
= (Yt1 , . . . , Ytn)

Remark A.2.1. For a Gaussian process, it is then equivalent to look at the mean and

covariance structure (as hinted by Theorem 2.1.3).

If WH verifies the representation given in Definition 2.3.1 (reduced fBM), then we have

proved that almost all its paths are continuous using Kolmogorov-Čentsov’s continuity

theorem (Theorem A.1.6). We also proved in Lemma A.1.8 that it is almost surely a centered

Gaussian process. Therefore, we know from the continuity that the density representing

WH(t) for each t ∈ [0;T ] is unique (up to P-null sets). From Theorem 2.1.3 and (A.4), we

obtain that WH must verify Definition 2.2.1.

On the other hand, if WH verifies Definition 2.2.1 and take another copy of a reduced fBM

V H (that is - verifying Definition 2.3.1), we know from above that both are Gaussians and

a.s. continuous. They have the same mean (zero), variance at any time. Hence, from the

a.s. continuity of V H
t for every t outside a P-null set E, we have

WH
t

d
= V H

t

Using the fact that WH and V H have the same covariance for any s, t ∈ R\E and from

the characterisation of Gaussians using their covariance structure (Theorem 2.1.3), we have

that WH is equivalent to V H which is ensured by the uniqueness of the probability density

under the continuity assumption. As indicated in Baudoin and Nualart [7], Section 5, this

is the only equivalence we have between the two definitions of fBM we have seen so far.
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Appendix B

Technical proofs

B.1 Proof of Definition 2.2.1

B.1.1 Ossiander and Waymire’s proof

Proof. Let n ∈ N, 0 ≤ t1 < · · · < tn and u ∈ Rn. Consider first two special cases, namely

for H = 0 we have: ∑
1≤i,j≤n

uiujΓ0(ti, tj) =
1

2
(
n∑
i=1

ui)
2 ≥ 0

Also, for H = 1: ∑
1≤i,j≤n

uiujΓ1(ti, tj) =
∑

1≤i,j≤n
uiujtitj = 〈ut, ut〉 = ‖ut‖ ≥ 0

where 〈−,−〉 is the usual dot product and ut := (uiti)
n
i=1.

To prove that the property still holds for 0 < H < 1, we will rely on the proof given by

Ossiander and Waymire [53], Lemma 2.1 and Theorem 2.1 in the specific case of d = 1.

They define an intermediate function γH ∈ L2(R) as follows:

γH(s, r) := |s− r|H−1/2sign(s− r) + |r|H−1/2sign(r)

Their argument is quite standard: using the standard inner product 〈−,−〉 on L2(R) as

stated below:

∀f, g ∈ L2(R)

∫ +∞

−∞
f(r)g(r)dr

they show that the fractional Brownian Motion covariance kernel ΓH is obtained (up to a

positive multiplicative constant) by taking the inner product of γH(t,−) and γH(s,−). We

start by proving that t 7→ γh(t,−) ∈ L2(R), observe that γH(0, r) = 0, ∀r ∈ R and for r 6= 0:

γ2
H(s, r) = [|s− r|H−1/2sign(s− r) + |r|H−1/2sign(r)]2

= |s|2H−1[|1− r/s|H−1/2sign(s− r) + |r/s|H−1/2sign(r)]2

= |s|2H−1[|1− r/s|H−1/2sign(1− r/s) + |r/s|H−1/2sign(r/s)]2 using the square

= |s|2H−1γ2
H(1, r/s)
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To show that u 7→ γH(1, u) in square integrable, we first need to show that u 7→ |u|H−1/2sign(u)

and u 7→ |1 − u|H−1/2sign(1 − u) are, respectively, locally square integrable in the neigh-

bourhoods of u = 0 and u = 1 especially since we are interested in the case H < 1/2. Let

a, b > 0, we have∫ 1+b

1−a
|1− u|2H−1du =

∫ b

0
|v|2H−1dv −

∫ a

0
|v|2H−1dv

=
1

2H

[[
|x|2Hsign(x)

]b
0
−
[
|x|2Hsign(x)

]a
0

]
<∞

This case verifies the properties for both functions stated above; the usual trick (a+ b)2 ≤
2(a2 + b2) let us conclude that we have settled the square integrability of u 7→ γH(1, u) by

symmetry on ]− 2; 2[. We still have to prove square integrability on R\]− 2; 2[. Again, by

symmetry, consider:∫ +∞

2
γ2
H(1, u)du =

∫ +∞

2

[
uH−1/2 − (1− u)H−1/2

]2
du

=

∫ +∞

2

(∫ u

u−1
(H − 1

2
)xH−3/2dx

)2

du

≤
∫ +∞

2

(∫ u

u−1
(H − 1

2
)2x2H−3dx

∫ u

u−1
dy

)
du by Hölder’s inequality

≤ (H − 1

2
)2

(∫ +∞

2
u2H−3dx+

∫ +∞

2
(u− 1)2H−3du

)
<∞ since 2H − 3 < −2

So, we have for s 6= 0:

0 ≤ ‖γ2
H(s,−)‖22 = |s|2H‖γ2

H(1,−)‖22 <∞

Hence, s 7→ γH(s,−) ∈ L2(R). We also need to find a way to express the cross term in the

covariance kernel in terms of γH . Observe that

‖γH(t,−)− γH(s,−)‖22 =

∫ +∞

−∞

[
|t− u|H−1/2sign(t− u)− |s− u|H−1/2sign(s− u)

]2
du

v:=s−u
=

∫ +∞

−∞

[
|t− s+ v|H−1/2sign(t− s+ v)− |v|H−1/2sign(v)

]2
du

w:=−v
=

∫ +∞

−∞

[
|t− s− w|H−1/2sign(t− s− w)− |w|H−1/2sign(w)

]2
du

= ‖γH(t− s,−)‖22 = |t− s|2H‖γH(1,−)‖22

From the bilinearity of 〈−,−〉, we have the usual trick:

〈γH(t,−), γH(s,−)〉 =
1

2

[
‖γH(t,−)‖22 + ‖γH(s,−)‖22 − ‖γH(t− s,−)‖22

]
=
‖γH(1,−)‖22

2

[
|t|2H + |s|2H − |t− s|2H

]
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Defining our intermediary function γ̂H using γ̂H := γH/
√
‖γH(1,−)‖22 let us verify the

positive semi-definiteness for our kernel: let 0 ≤ t1 < · · · < tn ≤ T for n ∈ N∗ and

(ci)
n
i=1 ∈ Rn, we have:∑

1≤i,j≤n
cicjΓH(ti, tj) =

∑
1≤i,j≤n

cicj〈γ̂H(ti,−), γ̂H(tj ,−)〉

= 〈cγ̂H(t,−), cγ̂H(t,−)〉 ≥ 0

where cγ̂H(t,−) := (ciγ̂H(ti,−))ni=1.

We conclude that the process WH is well-defined.

B.1.2 Gangolli’s proof:

The following is based on a case study by Gangolli himself, [28], page 134, Case II on how

fractional Brownian Motion can be defined on multidimensional parameter space Rd. Here,

we study in the 2-dimensional case to give an overview of the multidimensional parameter

case. For the algebraic definitions used below, see Liao’s book on Lévy processes in Lie

Groups [43], Appendix A.

Proof. As pinpointed in [53], historically the works of Gangolli [28] found its first application

to prove the positive semi-definiteness of (2.1) using so-called Lévy-Schönberg covariance

kernels. In this context, a kernel on a topological space S is any complex valued function

defined on S × S. Gangolli defines those kernels as follows (Definition 2.3, [28]):

Given a separable topological group G and a closed subgroup K of G and G/K denoting the

space of cosets xK, x ∈ G which we equip with the quotient topology, a kernel f on G/K is

a Lévy-Schönberg kernel if:

• f(a, b) = f(b, a) ∀a, b ∈ G/K

• ∃e f(a, e) = 0 ∀a ∈ G/K

• The characteristic kernel on G/K given by r(a, b) = f(a, a) + f(b, b) − 2r(a, b) is

invariant under G, i.e. r(xa, xb) = r(a, b) ∀x ∈ G, a, b ∈ G/K

• f is positive definite

Here positive semi-definiteness of a function f is taken with coefficients in C: for

(ui)
n
i=1 ∈ C, we want to verify that:∑

1≤i,j≤n
uiūjf(ui, uj) ≥ 0

In particular, we consider G the group (by composition ◦) of all proper rigid motions of

R2 (i.e. rotations then a translation) and K being the subgroup of proper rotations around

0R2 which is obviously closed by composition (i.e. the angles are just summed up). K is

normal in G: the left group action g 7→ g ◦K gives the same element for g as the right group

action g 7→ K ◦ g since the rotations are around the origin 0. R2 acts transitively on G by
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composition: indeed, for g := eiθ(−) + ν ∈ G and y ∈ R2, define x := (y − ν)e−iθ ∈ R2.

Then, we can check

g ◦ x = y

Therefore, from the fact thatK ∼= SO(2) is closed and normal in G, we have that (R2, Tstd,×)

(equivalent to the space whose topology is generated by the Euclidean norm) is characterised

as a topological group by G/K equipped with the quotient topology (Gangolli, [28], page

134, Case II). Recall that the quotient topology is the smallest topology such that the

canonical projection G→ G/K, g 7→ gK is continuous. We say that the topological space

(R2, Tstd) is one of the homogeneous spaces of G. This is what justifies studying G/K instead

of R2.

First, we check that the kernel:

f(a, b) :=
1

2
[‖a‖2H + ‖b‖2H − ‖a− b‖2H ] (B.1)

verifies the afore-mentioned definition except the last bulletpoint. Here, ‖‖ is the Euclidean

norm in R2. The symmetry is trivial and given K, we know that our origin e will be the

coset 0R2K. Note that r(a, b) = ‖a − b‖2H is invariant with respect to rigid motions as

required. The true insight comes from Gangolli’ Theorem 3.6 which we reformulate to fit

our needs (see original paper [28] for full list of assumptions implicitly verified here):

The kernel defined in (B.1) is a Lévy-Schönberg kernel if and only if, essentially,

f(a, b) =
1

2
(r(a, 0) + r(b, 0)− r(a, b)), a, b ∈ R2

where r(a, b) = Ψ(a − b) and if we denote the Bessel function of the first kind of order 0,

namely J0, and L a non-negative measure, we ask that Ψ verifies:

Ψ(a) =

∫ +∞

0
(1− Y0(λ‖a‖))dL(λ) ∀a ∈ R

Recall that:

Jα(x) =
∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(x
2

)2m+α

Gangolli makes the observation that the choice dL(λ) := dλ/λ1+2H let us obtain our previ-

ous radial function r(a, b) = ‖a− b‖2H . Indeed, let R > 0, then we have by definition:∫ R

0
(1− J0(λ‖a‖) dλ

λ1+2H
=

∫ R

0

∞∑
m=1

(−1)m+1

m!Γ(m+ 1)

(
λ‖a‖

2

)2m dλ

λ1+2H

=

∞∑
m=1

(−1)m+1

m!Γ(m+ 1)

‖a‖2m

22m

∫ R

0

(
λ‖a‖

2

)2m dλ

λ1+2H

=

∞∑
m=1

(−1)m+1

m!Γ(m+ 1)

‖a‖2m

22m

∫ R

0
λ2m−2H−1dλ

=
∞∑
m=1

(−1)m+1

m!Γ(m+ 1)

‖a‖2m

22m

R2m−2H

2m− 2H

= ‖a‖2H22H
∞∑
m=1

(−1)m+1

m!Γ(m+ 1)

1

2m− 2H

(
R‖a‖

2

)2m−2H
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So, there exists M−,M+ > 0 such that:

‖a‖2H(1−M−J−2H(R‖a‖)) ≤
∫ R

0
(1− J0(λ‖a‖) dλ

λ1+2H
≤ ‖a‖2H(1−M+J−2H(R‖a‖))

Recall that J−2H(x)
x→+∞−−−−→ 0, so taking R→ +∞, we obtain:

Ψ(a) = ‖a‖2H

which concludes the proof.

B.2 Proof of Equation (2.2)

Proof. The proof of (2.2) resides in a careful application of the fBM covariance kernel. Let

s > 1, H ∈]0; 1[. First, observe that

(1 + s)2H − s2H

s2H
=

(
1 +

1

s

)2H

− 1 =
2H

s
+
H(2H − 1)

s2
+ o

(
1

s2

)
and:

(s− 1)2H − s2H

s2H
=

(
1− 1

s

)2H

− 1 = −2H

s
+
H(2H − 1)

s2
+ o

(
1

s2

)
Hence, we obtain:

E[WH(1)(WH(1 + s)−WH(s))] =
1

2

[
1 + (1 + s)2H − s2H − 1− s2H + (s− 1)2H

]
=

1

2

[
(1 + s)2H − s2H + (s− 1)2H − s2H

]
= H(2H − 1)s2H−2 + o(1)

which concludes the proof.

B.3 Proof of Proposition 2.4.1

Proof. Lemma 2.4.2 will be crucial in the proof of (2.11). Indeed, we will separate the

integral into two parts: one for the history of fBM before time 0 and one from time 0 to

time t. Using (2.10) and integration by parts (as in (2.5)) on the integral:

Xα
t = ν

[
WH
t −WH

0 +

∫ t

−∞
−αe−α(t−s)WH

s ds

]
+m

After subtracting Xα
0 and since WH

0 = 0:

Xα
t −Xα

0 − νWH
t = −

∫ t

0
ανe−α(t−s)WH

s ds+

∫ 0

−∞
αν(eαs − e−α(t−s))WH

s ds
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Applying the triangle inequality on both the sum and the integrals and by Lemma A.1.7,

we have:

|Xα
t −Xα

0 − νWH
t | ≤

∫ t

0
ανe−α(t−s)|WH

s |ds+

∫ 0

−∞
αν(eαs − e−α(t−s))|WH

s |ds

Hence, from the usual rules concerning suprema of a.e. continuity of t 7→ WH
t (ω) and

integrals, we obtain:

sup
t∈[0;T ]

|Xα
t −Xα

0 − νWH
t | ≤ ανT sup

t∈[0;T ]
|WH

t |+
∫ 0

−∞
αν(eαs − e−α(t−s))|WH

s |ds

For the first term, we use Lemma 2.4.2 with p = 1 directly. For the second one, observe that

s 7→ αν(eαs− e−α(t−s))|WH
s | is non-negative: we can apply Fubini’s theorem to interchange

the integral and the expectation. Finally, by Taylor’s expansion on the exponential and the

fact that WH is Gaussian:

E

[
sup
t∈[0;T ]

|Xα
t −Xα

0 − νWH
t |

]
≤ C(1, H)ναTTH + να

√
2

π

∫ 0

−∞
eαs(Tα)|s|Hds

Hence, there exists a constant C (that could depend on H) such that:

E

[
sup
t∈[0;T ]

|Xα
t −Xα

0 − νWH
t |

]
≤ C

(
αTH + α2

∫ 0

−∞
eαs|s|Hds

)
By a simple change of variable and from the strength of convergence of the exponential

compared to linear functions, we have that:∫ 0

−∞
eαs|s|Hds =

1

α1+H

∫ 0

−∞
eu|u|Hdu︸ ︷︷ ︸
<∞

Since 0 < H < 1, we have:
α2

α1+H

∫ 0

−∞
eu|u|Hdu α→0−−−→ 0

Therefore, by taking the limit α→ 0:

E

[
sup
t∈[0;T ]

|Xα
t −Xα

0 − νWH
t |

]
α→0−−−→ 0

B.4 Proof of Lemma 2.4.2

Remark. This proof in [49] is valid only for 1/2 < H < 1. The only bottleneck for it to

be extended to the case 0 < H < 1/2 is fact that fBM has infinite quadratic variation for

H < 1/2 (see [57]). We propose an extension using Jost [39] that formalise changes in Hurst

parameter, namely here changing from H to 1−H for 1 ≤ p ≤ 2. Note that the case p ≥ 2

was proved in the more general context of fractional Lévy processes by Bender et al. [9].
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Proof. The proof makes use of so-called Volterra-like representations of fBM: for a more

general theory, see [7] with the special case of fBM treated in Section 5.

Explicitly, the argument presented here is a reformulation to fit our needs from Novikov

and Valkeila, [49]. Let Y H
t =

∫ t
0 s

1/2−HdWH
s . Using integration by parts (Remark 2.3.4,

(2.5)), we find that

WH
t =

∫ t

0
sH−1/2dY H

s (B.2)

Let MH be the so-called fundamental integral defined by

MH
t :=

∫ t

0
w(t, s)dWH

s

where w(t, s) is a scaled beta kernel such that w(t, s) := c(H) s−α(t− s)−α for s ∈]0; t[ and

w(t, s) := 0 for s > t with α := H − 1/2, c(H) is a function of H and the standard Beta

function, see [49]. In addition, combining these definitions yields:

MH
t = c(H)

∫ t

0
(t− s)1/2−HdY H

s

We are interested in finding an integral representation of Y H with respect to MH as we did

for WH with Y H . In Norros et al. [47], they provided a formal proof (Theorem 3.4) that

MH is a Gaussian (hence continuous) martingale for H ∈]0; 1[ with respect to the filtration

generated by WH . This is very surprising since WH is not even a semi-martingale! Their

argument relies on a reformulation of the fBM covariance kernel as given by (t, s) 7→ w(t, s).

They also showed that the filtrations generated by MH and Y H are the same - up to

null sets - hence the name fundamental for MH . It would be interesting to cover it but

unfortunately it is out of the scope of this report and we are going to assume this result.

In the same theorem, they use these facts to infer the following:

E[YT |FYt ] = E[YT |FMt ] = 2H

∫ t

0
(T − s)H−1/2dMH

s

Since T is arbitrary, this implies that for any t ≥ 0:

Y H
t = E[Y H

t |FYt ] = E[Yt|FMt ] = 2H

∫ t

0
(t− s)H−1/2dMH

s (B.3)

Finally, we can use (B.2) and (B.3) to find the upper bound by integration by parts (as in

(2.5))

sup |WH
t | ≤ TH−1/2 sup(|Y H

t | − |Y H
0 |) by (B.2)

≤ 2TH−1/2 sup(|Y H
t |)

≤ 4HT 2H−1 sup(|MH
t | − |MH

0 |) by (B.3)

≤ 8HT 2H−1 sup(|MH
t |)
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This leads to:

E[(sup |WH
t |)p] = (8HT 2H−1)pE[(sup(|MH

t |))p]

So, recall that M is a continuous martingale. We obtain from the celebrated Burkholder-

Davis-Gundy (BDG) inequality applied on MH for p ≥ 1 that there exists a constant

AHp > 0 such that:

E[(sup |WH
t |)p] ≤ (8HT 2H−1)pAHp E[(〈MH〉t)p/2] (B.4)

Then, observe that by definition of MH and WH , we can compute the quadratic variation

of MH . First, let K ∈ [1/2; 1] and WK be a K-fBM. Recall the covariance kernel used

in Section B.1.1 (Ossiander and Waymire’s proof) which can be adapted in this situation

as detailed in Proposition 2.1, [47]. Formally, since MK is a continuous martingale with

MK
0 = 0, their computation yields:

V ar(MK
t ) = 〈MK〉t =

c2(K)

(2K)2(2− 2K)
t2−2K =: d(K)t2−2K

where d(K) has an obvious definition. This result was also given in [49], Proposition 2.1.

We will rely on a marvellous theory inspired from the Molchan-Golosov-type integral and

proposed by Jost [39] that, essentially, let us change the Hurst parameter using a specified

transformation. Given our H-fBM WH , by Corollary 5.2, [39], we have that there exists a

unique (1-H)-fBM, W 1−H , such that:

WH
t =

(
2H

Γ(2H)Γ(3− 2H)

)1/2 ∫ t

0
(t− s)2H−1dW 1−H

s a.s., t ∈ [0;T ]

Given that, Jost herself gives the result for the fundamental integral MH of WH in Remark

5.6, [39]:

MH
t =

√
1−H
H

∫ t

0
s1−2HdM1−H

s

Then, apply the previously computed quadratic variation for 1−H > 1/2, we obtain that:

〈MH〉t =
1−H
H

∫ t

0
s2−4Hd〈M1−H〉s

=
1−H
H

d(1−H)

∫ t

0
s2−4Hd

(
s2H

)
=

2H(1−H)

H
d(1−H)

∫ t

0
s1−2Hds

= d(1−H)t2(1−H)

By applying a second time the BDG inequality, now on 〈MH〉, it yields a constant B1−H
p

that depends on d(1−H) s.t.:

E
[√
〈MH〉t

p
]
≤ B1−H

p tp(1−H)
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We have using (B.4):

E[(sup |WH
t |)p] ≤ (8H)pAHp B

1−H
p T p(2H−1))T p(1−H)

Define C(p,H) := (8H)pAHp B
1−H
p . Finally, we conclude:

E[(sup |WH
t |)p] ≤ C(p,H)T pH

Remark B.4.1. The Bulkholder-Davis-Gundy inequality was originally developed for p > 1

by Bulkholder [14] and the case p = 1 is due to the work of Davis [21].

B.5 Proof of Proposition 2.4.4

Proof. Pipiras and Taqqu [56], page 289, defined an inner product space ΛH for H < 1/2

on R as follows:

ΛH := {f : R→ R :

∫
R

[GHf(s)]2ds <∞}

where GHf(s) := 1
Γ(H)

∫
R f(u)(u − s)H−1I{u≥s}ds and equipped with the inner product

(with c(H) a constant that depends solely on H):

(f, g)ΛH :=
Γ(H + 1)2

c(H)2

∫
R

(GHf)(s)(GHg)(s)ds

Cheridito et al. [16], page 8, made the observation that f(x) := I{x≤0}e
λx and g(x) :=

I{x≤s}e
λx for any s ∈ R belong to ΛH . Given this fact and (2.10) we have that for any

s, t ∈ R

Cov(Xα
t+s, X

α
t ) = ν2e−αs(f, g)ΛH = ν2 Γ(2H + 1)sin(πH)

2π

∫
R
eisx
|x|1−2H

α2 + x2
dx

Finally, we take the specific case of s = ∆ to have the result that:

Cov(Xα
t+∆, X

α
t ) = K

∫
R
ei∆x
|x|1−2H

α2 + x2
dx

where K := ν2 Γ(2H+1)sin(πH)
2π . By stationarity, we have the following reformulation for the

second moment of the increment:

E[(Xα
t+∆ −Xα

t )2] = 2V ar(Xα
t )− 2Cov(Xα

t+∆, X
α
t ) = 2K

∫
R

(1− ei∆x)
|x|1−2H

α2 + x2
dx

We can find a uniform bound in α by taking α→ 0:

E[(Xα
t+∆ −Xα

t )2] ≤ 2K

∫
R

(1− ei∆x)
|x|1−2H

x2
dx

The left-hand side is real because it is a sum of a real integral and the Fourier transform of

an even function. This bound is crucial since we are dealing with Gaussian random variables
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which are characterised by their mean and but more importantly their (co-)variance. We

want to prove uniform integrability for all moments of the family of increments (Xα
t+∆ −

Xα
t )α∈R+ . We achieve this by using Hölder’s inequality on 1 and the increment itself.

Recalling that Y ∆,α
t := Xα

t+∆ − Xα
t is a centered Gaussian, we can then go back to the

studied case q = 2 from the property that, for any even n, the n-th Gaussian moment is

proportional to the second moment to the power of n/2. Let q > 0 and define h to be the

smallest even integer strictly greater than q. Since T <∞, there exists a constant C(T ) > 0

such that:

E[|Xα
t+∆ −Xα

t |q] ≤ C(T )E[(|Y ∆,α
t |q)

h
q ]

q
h by Hölder’s inequality

≤ C(T )E[(|Y ∆,α
t |h)]

q
h

So, using the properties of Gaussians, we have that there exists K > 0 such that:

E[|Xα
t+∆ −Xα

t |q] ≤ C(T )KE[(Xα
t+∆ −Xα

t )2]
q
2

Using the above-mentioned uniform bound in α for the second moment and the fact that

finite-variance Gaussians belong to L2, we can uniformly bound any moment of the incre-

ments which gives that the family (in α) (|Xα
t+∆ −Xα

t |q)α≥0 is uniformly integrable for a

fixed t and a fixed q. Given that Gaussian variables are in L1 and using Proposition 2.4.1

yielding the convergence in probability for any t, Xα
t −Xα

0
p−−−→

α→0
νWH

t , we conclude.

B.6 Proof of the application of Proposition 2.5.6

Remark. We prove the result when α→ 0 but the case α > 0 relies on the computation of

variance for the fOU process as given in [29] and would be done in the exact same fashion

as presented here.

Proof. Gut [32] uses the so-called uniform integrability in the Cesáro sense (Definition (f),

Section 2, page 49, [32]) defined as follows:

Let {Xnk, 1 ≤ k ≤ vn, n ≥ 1} be an array of random variables. This array is said to be

• uniformly integrable if

E
[
|Xni|I|Xni|>a

] a→+∞−−−−→ 0 uniformly in n and in i

• uniformly integrable in the Cesáro sense if

1

vn

vn∑
k=1

E
[
|Xni|I|Xni|>a

] a→+∞−−−−→ 0 uniformly in n

The main result we are going to use ([32], page 50) unfolds as follows:
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Theorem B.6.1. Gut’s theorem, Section 3, [32]

Let {Xnk, 1 ≤ k ≤ vn, n ≥ 1} be an array of non-negative random variables.

Let Fnk := σ{Xni, 1 ≤ i ≤ k}, for 1 ≤ k ≤ vn, n ≥ 1 and Fn0 = {∅,Ω}, n ≥ 1.

Let 1 ≤ p < 2 and suppose that the array {(|Xni|p, 1 ≤ i ≤ vn), n ≥ 1} is uniformly

integrable in the Cesáro sense. Set

SXn :=

{∑vn
k=1Xni, 0 < p < 1∑vn
k=1(Xni − E[Xni|Fn,i−1]), 1 ≤ p < 2

Then:

v−1/p
n SXn

Lp−→ 0 as n→ +∞

Therefore, we also have convergence in probability.

Let ∆n = T/n assuming T is a multiple of n. We add the additional observation:

from the proof of Proposition 2.4.4 (Section B.5), we have that the family of increments

(|Xα
t+∆n

−Xα
t |q)α≥0 is uniformly integrable for a given t and q.

Define vn := n and define the triangular array constructed as follows:

Y α
nk := nqH |Xα

k∆n
−Xα

(k−1)∆n
|q, 1 ≤ k ≤ n

Using Proposition 2.4.1 and its result in terms of convergence in law, we will set ν := 1 for

simplify the notation. More precisely, define

Y 0
nk := nqH |WH

k∆n
−WH

(k−1)∆n
|q

By stationarity of increments and H-self-similarity, we obtain:

Y 0
nk

d
= nqH∆qH

n |WH
1 |q

d
= T qH |WH

1 |q

So, our array Y 0 is made of identically distributed yet dependent variables. This observation

can be extended to Y α as well. Therefore, the convergence to 0 of

E
[
|Y α
ni|I|Y αni|>a

]
as a→ +∞

is independent n and i. This concludes that both Y 0 and Y α are uniformly integrable as

arrays. Hence, again by identical distribution of the entries of the two arays, we obtain that

{Y 0
ni}n∈N, 1≤i≤n and {Y α

ni}n∈N, 1≤i≤n are uniformly integrable in the Cesáro sense.

Remark. We could then carry on with α > 0 but we are going to prove for α → 0 using

self-similarity of fBM.

We can apply the convergence in distribution (given in the proof of Proposition 2.4.4)

to obtain :

N−1SY
α

N
d−→ N−1SY

0

N as α→ 0

In addition, for ∆ := T/N , applying the Gut’s theorem for p = 1 on Y 0 yields:

N−1SY
0

N =
N qH

N

N∑
k=1

|WH
k∆ −WH

(k−1)∆|
q p−→ N qH

N

N∑
k=1

E
[
|WH

k∆ −WH
(k−1)∆|

q
∣∣Fn,i−1

]
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as N → +∞. By direct computation (or see WinkelBauer, [66]), for Z ∼ N(0, σ2
Z) and

q > −1:

E [|Z|q] = σqZ
2q/2√
π

Γ

(
q + 1

2

)
In particular, for Z := E

[
WH
k∆ −WH

(k−1)∆|FN,k−1

]
, we have σZ = O(∆H) = O

(
TH

NH

)
(standard Landau O(−) notation) with T <∞. This proves that:

ζ :=
N qH

N

N∑
k=1

E
[
|WH

k∆ −WH
(k−1)∆|

q
∣∣FN,k−1

]
is such that

|ζ| <∞ a.s.

Therefore, we conclude that:

N qH

N

N∑
k=1

|Xα
k∆ −Xα

(k−1)∆|
q p−→ ζ as α→ 0, N → +∞

with ζ a.s. bounded which the result we were seeking.
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Appendix C

UZ model for high-frequency data

As two pioneers in the research field of microstructure noise, Robert and Rosenbaum de-

veloped a model for high-frequency data which comprises many features observed in the

market: the model with uncertainty zones (UZ). For completeness, please refer to their

original paper [59]. We shall expose herein the essential points we are going to use in our

study.

They start from the idea that non-speculative market participants are reluctant to price

changes as it may entail a reaction or adjustment on their behalves (e.g. hedging). This

implies that, from the discreteness of market prices, we should not consider that the true

market price is the closest value on the price grid {kα, k ∈ N}. Indeed, a naive idea would

be that, given a tick of size α and an - unobserved - efficient price P, the market price should

be given by kα, k ∈ N, where k is such that |P − kα| is minimal.

They assume that the price changes whenever market participants have sufficient proof or

belief that, despite the uncertainty surrounding the price itself from the last traded price, a

change in price is necessary. In some sense, they require the efficient price to be significantly

closer to the next price, as they write. To model this ”significance” formally, they introduce

a parameter η (which might be time-dependent) which define the width (relative to the tick

α) of the uncertainty bands around the price. In this framework, a price change occurs

whenever the price not only exit a band but also reaches the next one. By this, we mean

that the price should enter the lower band of the tick price (k+1)α from below or enter the

upper band of (k − 1)α from above. Essentially, this implies a no-man’s land of size 2ηα

around the mid-tick where we decide that we cannot know if the price has to move and,

from the reluctance of market participants, we say the price does not move.

More generally, they also define stopping times that models the time at which the efficient

price moves sufficiently to imply a market move. In addition, they also model the fact that

depending on market conditions and/or price range we are situated at, uncertainty bands

might be thicker or thinner by using a stochastic jump size parameter or with a variable

parameter η. As they do in [59], we shall consider that a trade happens at every timestep

(therefore a potential price change occurs at every timestep, which we should check) and

that all up and down bands have the same width of size:

α(1/2 + η)
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In our simulation study, we are given a sample path X that we take to be the efficient -

theoretical - price which is unobserved on real markets. Indeed, in practice we only see

the observed price from the last trade. To generate this observed path, we are going to

check at each timestep if the necessary price (to induce a move in the observed price) was

achieved . This will generate a path P with changes in price at times τi which are taken to

be the same as the trade times ti for simplicity. Following [59], we then define our realized

volatility estimator as stated below: at time t, we have:

R̂V t :=
∑
τi≤t

(
X̂τi − X̂τi−1

X̂τi−1

)2

where X̂τi := Pτi − sign(Pτi − Pτi−1)(1/2− η)α.

Figure C.1: Example of generation of observed prices (in orange) from theoretical prices
(dashed black line) through the UZ model with η = 0.25, α = 0.01. Price process is a GBM
with S0 = 100, σ = 0.2, r = 0, T = 1.
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Appendix D

Real market dataset

D.1 ξ-estimation procedure

Table D.1: ξ-estimation procedure on Realized Variance from Live Data Library
% NA ξ0.5/0.5 ξ1/1 ξ1.5/1.5 ξ2/2 ξ3/3

SPX2.rv 4.40 0.138 0.138 0.138 0.138 0.137
FTSE2.rv 3.90 0.134 0.131 0.129 0.127 0.123
N2252.rv 7.30 0.137 0.136 0.135 0.133 0.126
GDAXI2.rv 3.10 0.129 0.129 0.128 0.127 0.126
DJI2.rv 4.30 0.126 0.126 0.125 0.125 0.124
FCHI2.rv 2.50 0.135 0.134 0.133 0.132 0.130
HSI2.rv 11.60 0.082 0.083 0.084 0.084 0.084
KS11.rv 5.80 0.128 0.127 0.127 0.126 0.122
AEX.rv 2.60 0.136 0.139 0.141 0.142 0.142
SSMI.rv 4.20 0.149 0.153 0.157 0.159 0.159
IBEX2.rv 3.30 0.121 0.123 0.123 0.123 0.121
NSEI.rv 17.10 0.116 0.113 0.110 0.107 0.100
MXX.rv 4.30 0.081 0.081 0.081 0.081 0.080
BVSP.rv 6.40 0.114 0.115 0.116 0.116 0.115
STOXX50E.rv 3.10 0.127 0.124 0.119 0.111 0.084
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Table D.2: ξ-estimation procedure on Realized Kernel from Live Data Library
% NA ξ0.5/0.5 ξ1/1 ξ1.5/1.5 ξ2/2 ξ3/3

SPX2.rk 4.40 0.149 0.149 0.150 0.151 0.151
FTSE2.rk 3.90 0.148 0.146 0.144 0.142 0.137
N2252.rk 7.30 0.136 0.135 0.134 0.134 0.129
GDAXI2.rk 3.10 0.142 0.139 0.137 0.136 0.136
DJI2.rk 4.30 0.146 0.147 0.148 0.148 0.147
FCHI2.rk 2.50 0.127 0.127 0.127 0.126 0.124
HSI2.rk 11.60 0.097 0.096 0.095 0.095 0.092
KS11.rk 5.80 0.132 0.132 0.132 0.131 0.126
AEX.rk 2.60 0.136 0.139 0.140 0.141 0.140
SSMI.rk 4.20 0.167 0.170 0.173 0.175 0.174
IBEX2.rk 3.30 0.127 0.127 0.127 0.127 0.124
NSEI.rk 17.10 0.147 0.141 0.136 0.130 0.117
MXX.rk 4.30 0.091 0.092 0.090 0.088 0.082
BVSP.rk 6.40 0.109 0.112 0.114 0.114 0.112
STOXX50E.rk 3.10 0.128 0.125 0.120 0.112 0.081

Table D.3: ξ-estimation procedure on other asset classes
ξ0.5/0.5 ξ1/1 ξ1.5/1.5 ξ2/2 ξ3/3

BTC/USD.rv 0.159 0.150 0.139 0.125 0.091
EUR/USD.minrv 0.041 0.037 0.033 0.028 0.021
GOLD/USD.minrv 0.059 0.054 0.050 0.044 0.034
WTI/USD.minrv 0.090 0.085 0.080 0.074 0.062
USB02Y.minrv 0.054 0.050 0.042 0.035 0.025
USB05Y.minrv 0.056 0.050 0.047 0.045 0.036
USB10Y.minrv 0.052 0.047 0.045 0.042 0.028

62



Table D.4: ξ-estimation procedure on Realized Variance from Realized Library
% NA ξ0.5/0.5 ξ1/1 ξ1.5/1.5 ξ2/2 ξ3/3

DJI rv 17.1 0.135 0.135 0.133 0.131 0.125
FCHI rv 16.1 0.114 0.115 0.116 0.117 0.118
FTSE rv 27.7 0.115 0.116 0.116 0.114 0.109
IBEX rv 16.9 0.111 0.113 0.116 0.117 0.117
IXIC rv 17.1 0.113 0.113 0.113 0.112 0.110
MIBTEL rv 44.7 0.136 0.136 0.137 0.137 0.138
MID rv 17.2 0.123 0.121 0.121 0.120 0.118
N225 rv 19.7 0.109 0.111 0.113 0.114 0.115
RUA rv 17.1 0.133 0.130 0.128 0.125 0.120
RUI rv 17.1 0.133 0.131 0.128 0.125 0.120
RUT rv 17.0 0.121 0.117 0.114 0.114 0.113
MIB30 rv 16.4 0.136 0.135 0.135 0.136 0.136
GDAXI rv 16.2 0.118 0.117 0.116 0.116 0.115
SPTSE rv 35.7 0.115 0.114 0.114 0.115 0.119
SPX rv 17.0 0.136 0.133 0.130 0.127 0.121
MSCIAU rv 41.2 0.100 0.101 0.101 0.102 0.105
MSCIBE rv 38.1 0.123 0.128 0.133 0.138 0.144
MSCIBR rv 59.9 0.147 0.144 0.141 0.140 0.140
MSCICA rv 49.1 0.111 0.114 0.117 0.120 0.126
MSCICH rv 38.3 0.145 0.149 0.153 0.157 0.160
MSCIDE rv 37.9 0.126 0.127 0.128 0.130 0.131
MSCIES rv 38.6 0.113 0.116 0.117 0.117 0.115
MSCIFR rv 37.8 0.126 0.128 0.128 0.129 0.129
MSCIGB rv 37.9 0.132 0.135 0.136 0.136 0.131
MSCIIT rv 38.2 0.133 0.134 0.134 0.135 0.136
MSCIJP rv 43.3 0.128 0.130 0.131 0.133 0.138
MSCIKR rv 42.7 0.143 0.142 0.141 0.142 0.142
MSCIMX rv 59.3 0.118 0.121 0.124 0.128 0.138
MSCINL rv 37.8 0.131 0.136 0.140 0.143 0.146
MSCIWO rv 46.8 0.133 0.121 0.106 0.091 0.069
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Table D.5: ξ-estimation procedure on Realized Kernel from Realized Library
% NA ξ0.5/0.5 ξ1/1 ξ1.5/1.5 ξ2/2 ξ3/3

DJI rk 17.1 0.143 0.142 0.14 0.137 0.131
FCHI rk 16.1 0.106 0.105 0.106 0.107 0.108
FTSE rk 27.7 0.112 0.112 0.112 0.111 0.108
IBEX rk 16.9 0.110 0.114 0.116 0.117 0.116
IXIC rk 17.1 0.111 0.109 0.107 0.105 0.102
MIBTEL rk 44.7 0.120 0.121 0.122 0.123 0.126
MID rk 17.2 0.123 0.121 0.119 0.118 0.116
N225 rk 19.7 0.104 0.105 0.107 0.108 0.111
RUA rk 17.1 0.133 0.131 0.128 0.125 0.120
RUI rk 17.1 0.133 0.131 0.128 0.125 0.120
RUT rk 17.0 0.120 0.117 0.115 0.115 0.113
MIB30 rk 16.4 0.119 0.122 0.123 0.125 0.128
GDAXI rk 16.2 0.115 0.114 0.114 0.115 0.115
SPTSE rk 35.7 0.114 0.112 0.111 0.112 0.114
SPX rk 17.0 0.135 0.131 0.128 0.125 0.119
MSCIAU rk 41.2 0.087 0.090 0.092 0.093 0.097
MSCIBE rk 38.1 0.102 0.107 0.111 0.115 0.122
MSCIBR rk 59.9 0.137 0.133 0.131 0.128 0.125
MSCICA rk 49.1 0.099 0.101 0.103 0.106 0.111
MSCICH rk 38.3 0.123 0.129 0.134 0.139 0.144
MSCIDE rk 37.9 0.103 0.107 0.109 0.111 0.115
MSCIES rk 38.6 0.095 0.098 0.100 0.100 0.098
MSCIFR rk 37.8 0.107 0.108 0.108 0.108 0.107
MSCIGB rk 37.9 0.114 0.117 0.118 0.119 0.120
MSCIIT rk 38.2 0.112 0.115 0.117 0.120 0.123
MSCIJP rk 43.3 0.130 0.129 0.130 0.130 0.133
MSCIKR rk 42.7 0.127 0.129 0.130 0.131 0.131
MSCIMX rk 59.3 0.114 0.113 0.113 0.114 0.117
MSCINL rk 37.8 0.111 0.116 0.120 0.124 0.130
MSCIWO rk 46.8 0.111 0.102 0.092 0.081 0.064
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D.2 Forecasting volatility: tables

Table D.6: Predicting log-variance at horizons 1, 5 and 20 for other asset classes
AR(5) AR(10) HAR(1,5,20) RFSV

EURUSD ∆ = 1 0.522 0.505 0.496 0.521
EURUSD ∆ = 5 0.578 0.562 0.537 0.574
EURUSD ∆ = 20 0.623 0.619 0.610 0.680
BTCUSD ∆ = 1 0.528 0.523 0.521 0.520
BTCUSD ∆ = 5 0.799 0.782 0.734 0.776
BTCUSD ∆ = 20 1.05 1.044 0.918 1.003
XAUUSD ∆ = 1 0.549 0.551 0.526 0.533
XAUUSD ∆ = 5 0.684 0.669 0.630 0.680
XAUUSD ∆ = 20 0.762 0.741 0.721 0.794
WTIUSD ∆ = 1 0.333 0.334 0.319 0.323
WTIUSD ∆ = 5 0.446 0.439 0.415 0.437
WTIUSD ∆ = 20 0.538 0.528 0.534 0.568
USB02Y ∆ = 1 0.282 0.279 0.267 0.274
USB02Y ∆ = 5 0.317 0.311 0.308 0.325
USB02Y ∆ = 20 0.364 0.354 0.368 0.360
USB05Y ∆ = 1 0.658 0.654 0.644 0.662
USB05Y ∆ = 5 0.746 0.737 0.722 0.775
USB05Y ∆ = 20 0.835 0.829 0.818 0.887
USB10Y ∆ = 1 0.499 0.497 0.493 0.507
USB10Y ∆ = 5 0.640 0.651 0.612 0.627
USB10Y ∆ = 20 0.718 0.718 0.720 0.756

Table D.7: Predicting log-variance at horizons 1, 5 and 20 for SPY and BAC:
AR(5) AR(10) HAR RFSV

BAC ∆ = 1 0.118 0.119 0.117 0.115
BAC ∆ = 5 0.190 0.190 0.191 0.190
BAC ∆ = 10 0.307 0.305 0.332 0.301
SPY ∆ = 1 0.218 0.218 0.214 0.214
SPY ∆ = 5 0.342 0.342 0.341 0.346
SPY ∆ = 10 0.532 0.532 0.543 0.530

Table D.8: OMI Live Library data: Percentage of cases where each of the models had the
smallest P value.

AR(5) AR(10) HAR RFSV TOTAL

∆ = 1 0% 0% 33.3% 66.6% 100%
∆ = 5 3.33% 3.33% 73.3% 20% 100%
∆ = 20 0% 0% 40% 60% 100%
Overall 1% 1% 44% 44% 100%
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